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Abstract Local pattern mining on attributed networks is an important and
interesting research area combining ideas from network analysis and data min-
ing. In particular, local patterns on attributed networks allow both the char-
acterization in terms of their structural (topological) as well as compositional
features. In this paper, we present MinerLSD, a method for efficient local pat-
tern mining on attributed networks. In order to prevent the typical pattern
explosion in pattern mining, we employ closed patterns for focusing pattern
exploration. In addition, we exploit efficient techniques for pruning the pat-
tern space: We adapt a local variant of the standard Modularity metric used
in community detection that is extended using optimistic estimates, and fur-
thermore include graph abstractions. Our experiments on several standard
datasets demonstrate the efficacy of our proposed novel method MinerLLSD as
an efficient method for local pattern mining on attributed networks.
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1 Introduction

The analysis of complex networks, e. g., by investigating structural properties
and identifying interesting patterns, is an important task to make sense of such
networks, in order to ultimately enable an understanding of their phenomena
and structures, e.g., [2,3,5,7,8,21,30,38,39,43, 52-54, 59, 69, 72, 75]. In this
context, data mining on such networks represented as attributed graphs has
recently emerged as a prominent research topic, e.g., [3,8,21,30,38,57,72,75].
Methods for mining attributed graphs focus on the identification and extrac-
tion of patterns using topological information as well as compositional infor-
mation on nodes and/or edges given by a set of attributes, e.g., [6,80]. In
particular, local pattern mining focuses on the identification of dense sub-
structures in a graph that are captured by specific patterns composed of the
given attributes, e. g., for detecting communities [8,30,57,69, 72, 75].

In this paper, an adapted and substantially extended revision of [15], we
present MinerLSD a method for the efficient mining of local patterns on at-
tributed networks. Compared to our work described in [15], we have added
onto the discussion of the MinerLSD algorithm, also considering further re-
lated approaches for putting the proposed method into context. Furthermore,
we have considerably extended the evaluation and discussion of the proposed
novel algorithm with new experiments, also using new (larger) datasets, and
by illustrating the pattern mining approach using exemplary patterns.

MinerLSD focuses both on local pattern mining (e.g., for local commu-
nity detection) using the local modularity metric [8, 58, 60], as well as graph
abstraction that reduces graphs to k-core subgraphs [75]. In order to prevent
the typical pattern explosion in pattern mining, we employ closed patterns. In
addition, we exploit optimistic estimates for the local modularity for focussing
pattern exploration inspired by community detection methods and for pruning
the pattern space. Essentially, the optimistic estimate technique provides two
advantages: First, it neglects the importance of a minimal support threshold
which is typically applied in pattern mining. Second, it enables a very efficient
pattern exploration approach, given a suitable threshold for the local modu-
larity, as we will show below. Then, this threshold can of course alternatively
be entirely eliminated in a top-k approach. We demonstrate the efficacy of
our presented novel method MinerLLSD by performing experiments on several
standard datasets, in relation to two baselines for local pattern mining.

Our contributions are summarized as follows:

1. For local pattern mining on attributed graphs, we analyze the impact of
generating closed patterns compared to standard pattern mining in terms
of the search effort.

2. Using two baseline algorithms, we further investigate the impact of pruning
the pattern exploration space using an optimistic estimate of the local
modularity measure with different thresholds.

3. Finally, we propose the MinerLSD method for efficient local pattern mining
on attributed graphs. MinerLLSD relies on closed pattern mining, optimistic
estimate pruning, and graph abstraction.
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The rest of this paper is organized as follows: Section 2 discusses related
work, before Section 3 introduces basic notions and concepts. After that, Sec-
tion 4 presents the novel MinerLSD method. Next, Section 5 introduces the
applied datasets. Sections 6 discusses our experimental results. Finally, Sec-
tion 7 concludes with a summary and interesting directions for future work.

2 Related Work

The detection of local patterns is a prominent approach in knowledge discovery
and data mining, e.g., [41,55,56]. Below, we discuss related work in the areas
of local pattern mining, closed patterns, graph abstractions, and community
detection on attributed graphs.

In particular, the proposed novel MinerLSD algorithm builds on methods
for those fields. Thus, similar to the approaches discussed below, the proposed
MinerLSD approach also utilizes closed patterns, and graph abstractions, i.e.,
core subgraphs. However, it extends this using optimistic estimate pruning
using an interestingness measure adapted from (local) community detection. In
Section 6, we perform an extensive evaluation of the impact of closed patterns,
optimistic estimates, and core structures on the pattern mining effort.

2.1 Pattern Mining

In general, local pattern mining, e.g., [1,4,35,41,47,48,55,56] has many fla-
vors, including association rule mining, subgroup discovery, and graph mining.
At its core, it considers the support set of any pattern, i.e., the set of objects,
often called transactions, in which the pattern occurs. The goal then is to
enumerate the set of all patterns that satisfy some constraint. In the case of
association rules [1,35] typically the frequency of a pattern, or the frequency
of a contained implication in the pattern, respectively, are considered. When-
ever the constraint is anti-monotonic, as the frequency, a top-down search may
be efficiently pruned. Still this results in investigating a lot of patterns. In the
field of subgroup discovery, more complex constraints formalized in quality (or
interestingness) functions have been proposed; here, these do not necessarily
fulfill anti-monotonicity. To handle that, optimistic estimates for those quality
functions have been proposed [9,33,47,82] in order to efficiently prune the
pattern search space. Closed pattern mining (see for instance [66]) reduces the
search by considering patterns as equivalent when having the same support
set, and generating only closed patterns, i.e., a most specific pattern among
all equivalent patterns. Efficient enumeration algorithms have been provided,
e.g., [22,78]). Various algorithms and methodologies using closure operators
have also been proposed in the domain of formal concept analysis [81], which
goes further than the enumeration alone, being interested in the lattice struc-
ture of the set of closed patterns [31].
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2.2 Local Pattern Mining on Attributed Networks

For investigating complex networks, a popular approach consists of extracting
a core subgraph from the network, i. e., some essential part of the graph whose
nodes satisfy a local property. The k-core definition was first proposed in [70].
It requires all nodes in the core subgraph to have a degree of at least k.
The idea was further extended to a wide class of so-called generalized cores
[18]. The resulting subgraphs may be made of several connected components
that are then considered as structural communities. However, as this may
be too weak to obtain cohesive communities, some post-processing may then
be necessary. A successful method, for example, identifies k-communities [64]
that are extracted from the connected components of a graph derived from
the original graph.

Recently an extension of the closed pattern mining methodology to at-
tributed graphs has been proposed. It relies on the reduction of the support
set of a pattern to the core of the pattern subgraph [74]. This results in less
and larger classes of equivalent patterns, and hence less closed patterns. The
MinerLC algorithm proposed by Soldano et al. [76] is a generic method to
enumerate the set of such core closed patterns. The algorithm MinerLL.SD that
we propose in Section 4, closely follows the MinerLLC algorithm and adds re-
quirements regarding the local modularity of the pattern core subgraphs. This
is performed efficiently using the optimistic estimate pruning strategy of the
COMODO algorithm for community detection, mentioned in Section 2.3.

2.3 Community Detection on Attributed Graphs

Communities and cohesive subgroups have been extensively studied in net-
work science, e.g., using social network analysis methods [80]. Fortunato [27]
presents a thorough survey on the state of the art community detection algo-
rithms in graphs, focussing on detecting disjoint communities, e.g., [28, 58].
In contrast to such partitioning approaches, overlapping communities allow an
extended modeling of actor—actor relations in social networks: Nodes of a corre-
sponding graph can then participate in multiple communities, e. g., [44,65,84].
A comprehensive survey on algorithms for overlapping community detection
is provided in [83]. In contrast to the algorithms and approaches discussed
above, the proposed approach utilizes further descriptive information of at-
tributed graphs, e.g., [23].

Attributed (or labeled) graphs as richer graph representations enable ap-
proaches that specifically exploit the descriptive information of the labels as-
signed to nodes and/or edges of the graph. Exemplary approaches include
density-based methods, e.g., [25, 88], distance-based methods, e.g., [32,77],
entropy-based methods, e. g., [73,89], model-based methods, e. g., [16,85], seed-
centric methods, e.g., [20,36,37,86] and finally pattern mining approaches,
which we will describe in the following in more detail.
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Pattern mining approaches for community detection on attributed graphs
typically connect (local) pattern mining and community detection according to
several interestingness measures or optimization criteria. Moser et al. [57], for
example, combine the concepts of dense subgraphs and subspace clusters for
mining cohesive patterns. Starting with quasi-cliques, those are expanded until
constraints regarding the description or the graph structure are violated. Sim-
ilarly, Giinnemann et al. [34] combine subspace clustering and dense subgraph
mining, also interleaving quasi-clique and subspace construction. Galbrun et
al. [30] propose an approach for the problem of finding overlapping communi-
ties in graphs and social networks, that aims to detect the top-k communities
so that the total edge density over all k communities is maximized. This is
also related to a maximum coverage problem for the whole graph. For labeled
graphs, each community is required to be described by a set of labels. The
algorithmic variants proposed by Galbrun et al. apply a greedy strategy for
detecting dense subgroups, and restrict the resulting set of communities, such
that each edge can belong to at most one community. This partitioning involves
a global approach on the community quality, in contrast to our local approach.
Silva et al. [72] study the correlation between attribute sets and the occurrence
of dense subgraphs in large attributed graphs. The proposed method consid-
ers frequent attribute sets using an adapted frequent item mining technique,
and identifies the top-k dense subgraphs induced by a particular attribute set,
called structural correlation patterns. The DCM method presented by Pool et
al. [69] includes a two-step process of community detection and community
description. A heuristic approach is applied for discovering the top-k commu-
nities, utilizing a special interestingness function which is based on counting
outgoing edges of a community similar; for that, they also demonstrate the
trend of a correlation with the Modularity function.

The COMODO algorithm proposed by Atzmueller et al. [8] applies an
adapted subgroup discovery [4,14] approach for community detection on at-
tributed graphs. That is, COMODO applies subgroup discovery for detecting
interesting patterns (constructed from the set of compositional attributes) for
which their interestingness is evaluated on the graph topological structure.
The algorithm works on an edge dataset that is attributed with common at-
tributes of the respective nodes. Then, communities are detected in a top-k
approach maximizing a given community interestingness measure. This in-
cludes, among others, the local modularity, which is derived from the (global)
measure, i.e., the (Newman) Modularity [58,60]. For an efficient community
detection approach, COMODO utilizes optimistic estimate pruning.

In this paper, we adapt the COMODO approach integrating optimistic
estimate pruning for the local modularity as proposed by COMODO with
closed abstract pattern mining of the MinerLC algorithm. This results in the
efficient and effective MinerL.SD algorithm, making use of efficient techniques
based on abstract closed pattern mining and branch-and-bound pruning ac-
cording to the local modularity. At the same time, these techniques allow
effective selection strategies utilizing graph abstractions together with local
modularity, as we will show below.
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3 Background

In the following, we outline the background on closed local pattern mining,
introduce pruning based on optimistic estimates, and discuss pattern explo-
ration, abstraction, and selection combining principles from pattern mining
and graph mining, i. e., utilizing closure on the attribute space and topological
criteria based on local modularity (estimates) and k-cores.

3.1 Mining Closed Patterns to Enumerate Core Subgraphs

We consider the following general problem: Let G be an attributed graph, i.e.,
a graph where each vertex v is described by an itemset D(v) taken from a set
of items I. We want to enumerate all (maximal) vertex subsets W in G such
that there exists an itemset ¢ which is a subset of all itemsets D(v),v € W. W
is furthermore required to satisfy some graph related constraints. In standard
terminology, ¢ is a pattern that occurs in all element of W which is also
called the support set or extension ext(q) of q. Efficient top-down enumeration
algorithms exist as far as the constraints are anti-monotonic: whenever the
constraint fails to be satisfied by some pattern, it also fails for all more specific
patterns. This is obviously the case for the minimum support constraint that
requires the size of ext(q) to be above some minimal support threshold s.

A first way to reduce the overall search space and the size of the solution
set is to avoid duplicates, i.e., patterns ¢, ¢’ that occur in the same subgroup,
for which ext(q) = ext(q’). This is obtained by only enumerating closed pat-
terns. Given any pattern ¢ the associated closed pattern is the most specific
pattern f(q) which occurs in the same subgroup as g, i.e., ext(f(q)) = ext(q).
Furthermore, since we consider the vertices of a graph, it is natural to consider
graph related constraints, as for instance requiring that all vertices have a de-
gree of at least k in the subgroup graph Gy . For that purpose, each candidate
subgroup X is reduced to its core p(X) = W using the core operator p.

We start with the definition of closure: The operator f that returns for
any pattern ¢ the closed pattern f(q) is a closure operator (see below) defined
by f(g) = int o p o ext(q); the respective operators are defined as follows (note
that o denotes function composition):

— The intersection operator int(X) returns the most specific pattern occur-
ring in the vertex subset X.

— The core operator p(X) returns the core, according to some core definition,
of the subgraph Gx of G induced by the vertex subset X. p is an interior
operator (see below).

Definition 1 Let S be an ordered set and f : S — S a self map such that for
any x,y € S, [ is monotone, i.e. x <y implies f(x) < f(y) and idempotent,
i.e. f(f(2)) = f(a):

-If f(z) >z, [ is called a closure operator.

-If f(x) <z, f is called an interior operator.
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Essentially, core closed pattern mining relies on three main results:

1. It has been shown that whenever p is an interior operator, f = int o poext
is a closure operator [68].

2. Furthermore, core definitions rely on a monotone property of a vertex
within an induced subgraph [17]. For instance, the k-core of a subgraph
Gx is defined as the largest vertex subset W C X such that in the induced
subgraph Gy, all vertices v have a degree of at least k. The property is
monotone in the sense that when increasing Gx to Gx/ the degree of v
cannot decrease.

3. Finally, it has been shown that the core operator which returns the core
of some subgraph Gy, according to a monotone property, is an interior
operator [74].

Overall, this means that f(g) returns the largest pattern which occurs in
the core of the vertex subset ext(q) in which ¢ occurs. This is exploited in
core closed pattern mining [76], performing a top-down search of the pattern
space jumping from closed pattern to closed pattern: each closed pattern ¢
is augmented with some item z, then the next closed pattern f(q U {z}) is
computed.

3.2 Pruning Local Patterns in Graphs Using Optimistic Estimates

Another way to reduce the solution set is to consider some interestingness
measure M and require a subgroup W to induce a subgraph Gy with an
interestingness M (W) above some threshold. However such measures, for ex-
ample, the local modularity (see below), are usually not anti-monotonic. This
difficulty may be overcome by using some optimistic estimate of M which is
both anti-monotonic and allows an efficient pruning of the search space. Op-
timistic estimates are one prominent option in local pattern mining to prune
search spaces by complementing non-(anti)-monotonic interestingness mea-
sures by their respective optimistic estimators, e. g., [33,82]. Intuitively, if for
a given pattern (and all of its potential specializations) it can be proven that
their quality is either below the quality of the current top patterns, or below
a specified threshold, then pattern exploration does not need to continue for
that pattern, and the search space can often be pruned significantly.

In the scope of local pattern mining on graphs, several standard community
quality functions have been investigated, also specifying optimistic estimates
for a number of such community evaluation functions. As shown in [8] these
lead to a quite efficient approach for descriptive community detection using
local pattern mining. In summary, using optimistic estimates we can enumer-
ate pairs (¢, W), of pattern ¢ and subgroup W inducing the subgraph Gy .
Then, we can select subgraphs according to an interestingness measure M of
the subgraph using an anti-monotonic optimistic estimate of M to prune the
search. Additionally, a minimal support constraint can also be applied in order
to improve the effectiveness of pruning.



8 Martin Atzmueller et al.

Below, we summarize main results on using optimistic estimate pruning
for community detection, specifically addressing the (local) modularity qual-
ity measure. Here, the concept of a community intuitively describes a group
W of individuals out of a population such that members of W are strongly
“connected” to each other but sparsely “connected” to those individuals that
are not contained in W. This notion translates to communities as vertex sets
W C V of an undirected graph G = (V, E); in the following, we adopt the
notation of [8] for introducing the main concepts: n := |V|, m := |E|, and
mw = |{{u,v} € E : u,v € W}| denotes the number of intra-edges of W.

There are different interestingness measures for estimating the quality of a
community 2V — R, also according to different criteria and intuitions about
what “makes up” a good community. One particular community quality func-
tion is the Modularity [58,60]. In the context of local pattern mining, we aim
to mazimize local quality functions for single communities. For that, we apply
an adaptation of the Modularity interestingness measure, which essentially is
a global measure estimating the quality of a community partitioning. Then,
we focus on the modularity contribution of each individual community in order
to obtain a local measure for each community, cf., [8], which we further call
local modularity (MODL).

Overall, the Modularity MOD [58,60,61] of a graph clustering with k com-
munities C1,...,Cy C V focuses on the number of edges within a community
and compares that with the ezpected such number given a null-model (i.e., a
corresponding random graph where the node degrees of G are preserved). It
is given by

Mo = 5 3 (- TS scw. o). @

2m
u,veV

where C(i) denotes for i € V' the community to which node i belongs. A,
denotes the respective entry of the adjacency matrix A. 6(C(u),C(v)) is the
Kronecker delta symbol that equals 1 if C'(u) = C(v), and 0 otherwise.

The modularity contribution of a single community given by a vertex set
W, W C V in a local context (e.g., in a subgraph induced by the pattern),
i.e., the local modularity (MODL), can then be computed (cf., [8,61,63]) as
follows:
d(u)d(v)

m
MODL(W) = WW - > i

u,veW

(2)

For the above (MODL), an optimistic estimate has been introduced in [8]. It
can be derived based only on the number of edges my, within the community:

0.25, if my > 1

2
m .
o i otherwise.

3)

0e(MODL)(W) = {

For a detailed discussion, the derivation of the local measure, and the respec-
tive proofs, we refer to [8].
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3.3 Local Pattern Exploration, Abstraction, and Selection

Pattern mining commonly aims at discovering a set of novel, potentially useful,
and ultimately interesting patterns from a given (large) data set [26]. For
pattern exploration, we apply local pattern mining, in particular, (abstract)
closed pattern mining [22, 66, 74, 76, 78] due to its efficient traversal of the
search space for pattern enumeration and abstraction as discussed above.

Regarding pattern selection, we discuss the choices of core abstraction and
modularity-based selection in the following: In contrast to many methods used
in network analysis and graph mining, pattern mining on attributed graphs
specifically aims at a description-oriented view, by including patterns on at-
tributes, but also considering the topological structure. Many community min-
ing algorithms, for example, only collect sets of nodes denoting the individ-
ual communities thus merely focusing on structural/topological aspects of the
graph; typically, then there is no simple and easily interpretable description,
such that a community would be represented mainly as a set of IDs, cf., [8].

For local pattern mining, the goal is typically to detect a set of the most
interesting patterns according to a given quality function, e. g., with a quality
above a certain threshold, or the top-k patterns according to the ranking of
the quality function denoting their interestingness. For subgroup discovery, as
an exemplary instance, the goal is then to obtain the set of patterns covering
subgroups that are “as large as possible and have the most unusual statistical
characteristic with respect to the property of interest” [82]. Thus, the interest-
ingness of a pattern can then be flexibly defined, e. g., by a significant deviation
from a model that is derived from the total population [41,55,56]. Therefore,
typically the size of a pattern or the size of its extension, respectively, and the
deviation compared to some null-model specifies the interestingness which is
formalized in the quality function for ranking the patterns.

For pattern mining on networks and graphs, there exist several quality
measures, usually taking into account the support of the pattern, i.e., its size,
similar to the criteria discussed above. Furthermore, the topological struc-
ture of the subgraph induced by the pattern is also taken into account. Here,
standard quality functions include the segregation index [29], the average out
degree fraction [87], the conductance [50] and the Modularity [58], as we have
discussed in the previous section. In general, the core idea of the evaluation
function is to apply an objective evaluation criterion, for example, for the
Modularity the number of connections within the community compared to the
statistically “expected” number based on all available connections in the net-
work, and to prefer those communities that optimize the evaluation function.

A thorough empirical analysis of the impact of different community min-
ing algorithms and their corresponding objective function on the resulting
community structures is presented in [51], based on the analysis of commu-
nity structure in graphs (as presented in [50]). Furthermore, Atzmueller et
al. [8,11,12] have empirically investigated different community quality func-
tions in the scope of local pattern mining. As shown there for the provided ex-
periments, the local modularity quality function indicated the best results for
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pattern filtering and pruning in local pattern mining applications, since it pro-
vides large high quality communities, i. e., subgroups referring to the induced
subgraphs, smaller patterns in terms of their description, as well as statisti-
cally significant patterns compared to the other mentioned quality functions
which focus on smaller subgroups; those were typically also not statistically
significant as specifically presented in [8].

Furthermore, the local modularity quality function (see Equation 2) intu-
itively provides the prominent property of assigning a higher ranking to larger
(core) subgraphs under consideration, if these are considerably more densely
connected than expected by chance. Therefore, these criteria conveniently cap-
ture the notion of larger subgraphs and having the most unusual statistical
characteristics with respect to the null-model. In the following, we show how
these criteria are directly implemented in the local modularity measure.

Consider the local modularity MODL(W) of a subgraph W:

MODL(W) = ™% _ §~ M:% —_— d(u) d(v)

m
u,veW u,veW

Since the first factor % is a constant, we can consider the second factor of the
former expression: It is easy to see that this factor itself is order equivalent to
the local modularity function MODL, since it only depends on a fixed constant
%; by not including that it is thus not normalized relatively to the number
of edges of the graph. Instead, it focuses on the number of edges of the (core)
subgraph (the minuend of the term) and its deviation assessed by the null-
model which is captured by the subtrahend of that term.

Thus, it is easy to see that the MODL function tends to focus on larger
patterns (larger subgraphs) having the most unusual statistical characteristics
with respect to the null-model. By utilizing appropriate constraints on the
graph structure, e.g., using k-core abstractions we can further focus on the
unusual distributional characteristics. By applying k—core abstractions, for
example, with increasing k£ we tend to focus on increasingly denser pattern
structures (subgraphs). We will also show this by our experiments in Section 6
when we discuss our results.

To sum up, we apply the local modularity measure MODL as introduced
above for focusing pattern exploration on the statistically most unusual sub-
graphs. Applying k-core constraints helps due to its focus on denser subgraphs,
as also theoretically analyzed in [67] for k-cores. Overall, we specifically focus
on “nuggets in the data” [40], i.e., on exceptional patterns according to the
principles of local pattern mining. In addition, the local modularity neglects
the importance of a minimal support threshold which is typically applied in
pattern mining, since it directly includes the size of the pattern as a criterion.
This enables a very efficient pattern mining approach, given either a suitable
threshold for the local modularity, or by targeting the top-k patterns.
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4 The MinerLSD Algorithm

In the following, we describe our proposed novel method MinerLSD in de-
tail. MinerLLSD integrates core subgraph closed pattern mining with pattern
selection according to the local modularity MODL function, and optimistic es-
timate pruning according to a specific optimistic estimator, i.e., oe(MODL).
As input parameters, MinerLSD requires a graph G = (V, E), a set of items
I, a dataset D describing vertices as itemsets and a core operator p. p depends
on G and to any image p(X) = W we associate the core subgraph C' whose
vertex set is vs(C') = W. In our experiments, p(X) returns the k-core of X.
As further parameters, MinerLLSD considers the corresponding value k as well
as a frequency threshold s (defaulting to 0) and a local modularity threshold
Im. The algorithm outputs the frequent pairs (¢, W) where ¢ is a core closed
pattern and W = p o ext(c) its associated k-core. For evaluation purposes,
we also count the number of patterns above the local modularity threshold
(#lm), and the number of patterns for which their estimate is above the local
modularity threshold (#lme). It is important to note, that in the enumeration
step MinerLSD ensures that each pair (¢, W) is enumerated (at most) once.

MinerLSD (G, I, D, p, s, lm)
#lme+ #lm<+ 0
W« p(V)
// also defines the associated core subgraph C = Gy
if |W|< soroe(MODL)(W) < Im then exit
enum(int(W), C,0) // int(W) is the closure of ()

Function enum(c, C, EL)
ensure: outputs the frequent (¢/, W') pairs
where ¢’ D ¢ and contains no items of EL
Increase #lme
if MODL(C) > Im then
Increase #1m and Output (¢, vs(C))
end if
for allz € I\ cdo
/* Generate all augmentations of ¢*/
W =poext(cU{z}) // with core subgraph C*
¢ < int(W)
if | W |> s and 0e(MODL)(W) > Im and ¢NEL = () then
enum(c, C*, EL)
// enumerate the subtree rooted on ¢
EL + ELU {z}
end if
end for

Function int(W)
return Nyew D(v)
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Table 1 Datasets/Characteristics: Number of edges (|E|), vertices (|V|), labels (|L]), the
average vertex degree (deg(v)), and average number of labels per vertex (|l(v)])

Nom V] |E| |L]  deg(v) |l(v)]
S50 50 74 14 2.96 7
Lawyers 71 556 42 15.66 20
CoExp 151 1849 36 24.49 18
LastFM 1892 12717 17625 1344 40.07
Delicious 1867 7664 52800  8.21  123.47
DBLP.C 3140 10689 4588  6.81 15.02
DBLP.P 45131 228173 32 1011 215

DBLP.S 108032 276658 23254 5.12 13.93
DBLP.XL 929937 3461697 92164 7.44 10.16

5 Datasets

We performed our experiments utilizing a variety of attributed graph datasets
ranging from small to medium graphs with small to large sets of items. Table 1
depicts the main characteristics of these datasets (see also [30]), which have
been previously used in pattern mining tasks on attributed graphs. For each
dataset, we indicate the number of edges (| E|), vertices (]V]) and labels (|L]),
the average vertex degree (deg(v)) and average number of labels per vertex

(J{(v)]) in the table.

— 850 is a standard attributed graph dataset! used in a previous work about
graph abstractions [74]. It represents 148 friendship relations between 50
pupils of a school in the West of Scotland; the labels concern the students’
substance use (tobacco, cannabis and alcohol) and sporting activity. The
values of the corresponding variables are ordered (see [74] for details).

— The Lawyers dataset concerns a network study of corporate law partner-
ship that was carried out in a Northeastern US corporate law firm from
1988 to 1991 in New England [46]. It concerns 71 attorneys (partners and
associates) of this firm who are the vertices of four networks. In the result-
ing dataZ, each attorney is described using various attributes. We consider
the advice network which is originally a directed graph in a undirected ver-
sion, so that two lawyers are connected if at least one asks for advice to
the other one.

— The CoExp dataset models a representative regulatory network for yeast
obtained from Microarray expression data processed by the CoRegNet [62]
program. In the CoExp dataset the vertices are co-regulators and they are
linked if they share a common set of target genes. The vertices are labeled

1 Available at:
http://wuw.stats.ox.ac.uk/~snijders/siena/s50_data.htm

2 Available at:
https://www.stats.ox.ac.uk/~snijders/siena/Lazega_lawyers_data.htm
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with their influence profile along a metabolic transition of the organism.
Each influence value represents the regulation activity of the considered
co-regulator at some instant of the metabolic transition.

— LastFM, DBLP.C and DBLP.XL were used in Galbrun et al. [30]. LastFM
models the social network of last.fm where individuals are described by the
artists or groups they have listened to. DBLP.C contains a co-authorship
graph built from a set of publication references extract from DBLP of
researchers that have published in the ICDM conference. The authors are
labeled by keywords extracted from the papers’ titles. DBLP.XL is the
complete labeled DBLP co-authorship network used in [30].

— DBLP.P was used in Bechara-Prado et al. [19]. It represents a co-authorship
graph built from a set of publication references extract from DBLP, pub-
lished between January 1990 and February 2011 in the major conferences
or journals of the Data Mining and Database communities. Three labels
have been added to the original dataset based on the scope of the confer-
ences and journals, respectively: DB (databases), DM (data mining) and
AT (artificial intelligence).

— Delicious consists of the social (friendship) network of the resource shar-
ing system delicious where individuals are described by their bookmarks’
tags. The dataset is publicly available and was obtained from the HetRec
workshop [24] at Recsys 2011.

— DBLP.S was used in Silva et al. [71]. It also represents a co-authorship
network from a set of publication references extracted from DBLP.

6 Experiments and Results

In the following, we first summarize the applied baseline methods that were
used in the comparison with the presented MinerLSD method. After that, we
present our experimental results on the datasets described in Section 5.

6.1 Baseline Methods

The applied set of baseline methods consists of MinerLC — an efficient algo-
rithm for mining core closed patterns, and COMODO- an efficient algorithm
for descriptive community detection using optimistic estimates.

6.1.1 MinerLC

MinerL.C? (cf., [76]) enumerates pairs (¢, W) where Gy is the core subgraph
of pattern ¢, i. e., subgroup W = poext(c) where o is the composition operator,
p is a core operator and c is the largest pattern that occurs in W and is called
a core closed pattern. A threshold on the core sizes allows to select frequent

2 https://grouplens.org/datasets/hetrec-2011/
3 https://lipn.univ-parisi3.fr/MinerLC/
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core closed patterns and to accordingly prune the search. The selection process
relies then partly on the anti-monotonic support constraint and partly on the
fact that there are less pattern core subgraphs than pattern subgraphs as
various pattern subgraphs Gy (q) may be reduced to the same core subgraph.

6.1.2 COMODO

The COMODO algorithm* presented in [8] performs description-oriented
community detection in order to discover the top-k communities. In summary,
COMODO enumerates pairs (¢, W) where Gy is the subgraph of pattern ¢
for vertex subset W. It selects top k subgraphs according to an interestingness
measure M of the subgraph and uses an efficient anti-monotonic optimistic es-
timate of M to prune the search. Additionally, a minimal support constraint
can also be applied in order to improve the effectiveness of pruning.

6.1.3 Similarities and Differences in Pattern Selection

Both the considered baseline methods, i. e., MinerLC and COMODO output
a set of pairs (pattern, vertex subset). However, in order to compare their
outputs we have to consider the following differences:

— In COMODO the vertex subset W is obtained as the extremities of the
set of edges in which a pattern occurs and a pattern occurs in an edge
whenever it occurs, in the original dataset, in both connected vertices.
That is, for each edge we assign the set of common items of both nodes,
such that a pattern always covers two nodes connected by an edge. As a
consequence, W ignores isolated nodes in which p occurs. To obtain the
same vertex subset in MinerLC (and MinerLSD) it is necessary to remove
isolated nodes, which is enabled by applying a 1-core graph abstraction.

— Since COMODO does not enumerate closed patterns, the same subgroup
may be associated to several patterns. For that case, a post-processing
is needed to eliminate the duplicates from the list of subgroups which
may then be compared to the subgroups in the MinerL.C pairs. This post-
processing is one of the standard post-processing options of COMODO.

— MinerLLC is run with a core definition while COMODO uses various pa-
rameters to limit the enumeration, as for instance the top-k parameter.

To compare the results, MinerLC (as well as MinerL.SD) should be run
with the same minimum support threshold as COMODO and should only use
a l-core abstraction. The other parameters of COMODO should then have
a value that does not limit the enumeration, e.g., by providing a sufficiently
large top-k parameter to enable an exhaustive enumeration.

Furthermore, Miner.C and COMODO select patterns according to differ-
ent criteria. This is exemplified in Figure 1, in which we have three graphs and
three subgraphs induced by three vertices (in red). The subgraph Gia3 of the

4 http://www.vikamine.org [10]
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top graph G is a 2-core with a local modularity of 0.178. Within the central
graph, the subgraph Gi23 is also a 2-core but with a low local modularity of
-0.15. Finally, within the bottom graph, G123 is not a 2-core (since it has an
empty 2-core subgraph) with a high local modularity of 0.16.

c =

L L 2 L 2 © © 1% 0

Fig. 1 Three graphs (top, center, bottom) each with a subgraph displayed in red. The two
topmost subgraphs are 2-cores while the bottom subgraph has an empty 2-core. The top
and bottom graphs have a local modularity above 0.15 while the central one has a negative
local modularity score of -0.15.

6.2 Results and Discussion

In our experiments below, we first investigate the impact of closure, before we
focus on the k-core abstraction. We perform a detailed analysis of the efficiency
of using the local modularity estimate for pruning the search space. Finally, we
provide a structural pattern set analysis considering different metrics, and dis-
cuss exemplary patterns for illustrating the efficacy of the proposed approach.

6.2.1 Parameters and Datasets

For MinerLSD, it is important to note that in our experiments described below
we did not have to use the minimal support s, since the local modularity
threshold is efficient enough to strongly reduce the number of patterns.

Below, we consider the following pattern quantities, where the (closed pat-
tern, support set) pairs (c, e) are output by MinerLC unless specified; also, we
consider a given local modularity threshold Im.

— #c the number of pairs (¢, e).

— #tlme: the number of pairs (¢, ¢) such that oe(MODL)(e) > Im.

— ##nec: the number of (necessary) pairs (c,e) a top-down search has to
consider to ensure that no pair with oe(MODL)(e) > Im is lost. See Sec-
tion 6.2.5 for details and results on #nec.

— #lm the number of pairs (¢, e) such that MODL(e) > Im

— #lmeSD: the number of pairs (¢, e) such that oe(MODL)(e) > Im as gen-
erated by COMODO.
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We ran the original COMODO and MinerLC programs as available. Min-
erLLSD is derived from the sources of MinerLC and is to be found on the
MinerL.C web site®. A new MinerLC version integrates the MinerLSD devel-
opments. The experimental results presented here may then be obtained using
appropriate parameters and options of the new software.

6.2.2 Impact of Closed Patterns in Reducing the Search Space

MinerLSD searches a space of closed patterns while COMODO searches the
whole pattern space. Therefore, we will investigate the impact of the closure
reduction, for each local modularity threshold Im. For that, we first consider
the quantity #lme of core closed patterns with a local modularity estimate
above Im, as provided by MinerLLSD, when using 1-cores. We consider then the
quantity #lmeSD of patterns developed by COMODO using the same thresh-
old. Table 2 reports #lme and #lmeSD for our datasets under investigation.

We observe two very different situations. In the Lawyers and CoExp datasets
there is a large difference between #lmeSD and #lme, while there are consid-
erable but not so strongly expressed differences in the other datasets compared
to the former. Large differences typically occur when items have strong depen-
dencies hence leading to a large reduction of the search space when applying a
closure operator. For instance, in the Lawyers dataset vertices are described by
various numeric attributes. In our representation, a single numeric attribute
x leads to a set of x < s; and of x > s; items with various thresholds s;.
This allows to include interval constraint as x €]s;, s;| within patterns. How-
ever there are then several equivalent patterns in which the same interval is
represented in various ways. For instance, consider 4 thresholds s1, ..., s4, the
interval @ €]sass3] is represented by & > so,x < s3, ¢ > 81,2 > s,z < S3
and x > s1,x > so, ¢ < s3,¢ < s4. The latter is the only one found in
a closed pattern. COMODO has then to generate many equivalent patterns
while MinerLLC, which applies a closure operator at each specialization step
never generates two equivalent patterns, thus reducing the exploration of the
pattern space effectively.

In the DBLP.P datasets at the contrary the items are tags, with no tax-
onomic order relating them. Therefore, the values of #lme and #lmeSD are
much closer, and even identical regarding the DBLP.C dataset.

6.2.3 k-core sizes of the various networks

Before considering how reducing support sets to k-cores affects the number of
closed patterns in each dataset, we consider the various networks and compute
their k-core sizes for a range of values of k. This pre-analysis aims to evaluate
which level of k& we should use in our experiments. For small datasets for
which computing closed patterns does need much resources this is not that
important. However, for large datasets with many attributes, i.e., potentially

5 https://lipn.univ-parisi3.fr/MinerLC/
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Table 2 Number of patterns to develop in MinerLSD and COMODO (according to the
respective local modularity threshold 0.005 ... 0.15) using a 1-core abstraction for MinerLSD.

Data / #c 0.005 0.01 0.02 0.03 0.05 0.15
S50 83

#lmeSD 493 493 357 326 259 83
#lme 83 83 7 72 67 36
CoExp 196

#lmeSD 1232895 | 991231 806911 | 468991 | 285183 | 77823
#lme 178 166 150 133 114 64
DBLP.P 2396

#lmeSD 148 32 18 9 5 3
#lme 34 22 15 9 5 3
Lawyers 3221

#lmeSD 3021675 | 1535949 | 677089 | 420699 | 168689 | 10339
#lme 2929 2512 1970 1640 1146 295
DBLP.C 14820

#lmeSD 179 66 24 16 7 1
#lme 179 66 24 16 7 1

large numbers of closed patterns, it is much better to have a rough guideline
for selecting appropriate parameters for optimizing the computational effort.

In Figure 2 we display the k-core sizes for a range of values of k, for each
dataset. As we will see below, the small but densest networks for which local-
modularity-based pruning has a weak efficiency, namely coExp and Lawyers,
also exhibit a (relatively) slow decay with respect to increasing k values,
whereas for the other (larger) datasets we observe a quite considerable de-
crease in terms of the k-core sizes.
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Fig. 2 k-core sizes of the networks associated to our datasets versus k.
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6.2.4 Modularity Distributions

As a prerequisite for the further analysis of the local modularity optimistic
estimate, we aimed to get a more detailed insight into the distribution, sim-
ilar to our pre-analysis for the k-cores discussed above. Figures 3-4 show the
detailed results. The plots indicate the “meaningful” values for estimating the
local modularity thresholds, which support our selections of parameters in the
subsequent evaluations. Furthermore, Figure 3 also indicates the pruning po-
tential of the local modularity threshold, even using our rather approximating
sampling strategy.

6.2.5 Pruning: Efficiency of the Local Modularity Estimate

For investigating the efficiency of pruning using the modularity estimate, we
compare our proposed algorithm MinerLSD to the MinerLL.C algorithm, which
applies no optimistic estimate pruning. For the other baseline, i.e., COMODO
we already investigated the efficiency of MinerLSD which showed a consider-
able reduction in the number of considered patterns, cf., Section 6.2.2. Regard-
ing the number of output patterns, both actually yield the same numbers, if
a postprocessing step of COMODO is applied for keeping only the subset of
closed patterns (as discussed in Section 6.1.3), i.e., by considering all pairs
(c,e) with the same (vertex) subgroup e and only keeping the most specific
ones. With this postprocessing COMODO returns exactly the same patterns
as those output by MinerLLSD in our experiments. However, this approach is
quite inefficient, cf., Section 6.2.2, since the number of considered patterns is
typically considerably larger for COMODO compared to MinerLSD.

Regarding the modularity estimate, we first investigate how the local mod-
ularity constraint affects the number of output pairs. In general, as oe(MODL)
is an optimistic estimator, we may consider the best possible optimistic estima-
tor which would only develop the #nec nodes that have at least a descendant
(c,e) with local modularity MODL(e) > Im. We have then #lm < #nec <
#Ilme. Whenever #Im is far from #nec this means that there does not exist
any good optimistic estimator. Whenever #Im is close to #nec which in turn
is far from #lme this means that there could be some optimistic estimator
that is much better than oe(MODL). By computing these numbers, we can
then state separately for each dataset whether the oe(MODL) estimate is ef-
ficient in pruning the search with respect to the best possible estimator nec
and whether nec would be efficient in pruning the search, if such an estimator
would be found.

Small Datasets In a first step, we first considered several rather small datasets
using no minimal support parameters, and a 1-core abstraction in MinerLSD
aiming to provide a comparable setting for COMODO. We also checked the
number of patterns retrieved by COMODO with additional postprocessing as
discussed above - only keeping the closed patterns. We used parameters that
do not limit the enumeration in COMODO, i. e., for an exhaustive search only
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Fig. 3 Detailed Estimated/Observed Modularity Distributions: We consider the unlabeled
graph of the dataset. We generate 100 random subgraphs of the unlabelled graph picking
randomly half of the vertices. For each random graph, we compute the local modularity of the
abstract 5-core subgraph and we report the survival distribution of the local modularity over
the 100 experiments (in orange), i.e., for each local modularity (Im) level, the probability
of having at least that level in our sample. In blue, we report the (empirically observed)
survival distribution of the local modularity, i.e., the respective MODL values of the core
subgraphs of the abstract patterns discovered using the 5-core abstraction.
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Fig. 5 Numbers of patterns with #lme, #nec and #lm values (on the Y-axis), above
the local modularity threshold (on the X-axis) for 5 attributed networks, using a 1l-core
abstraction.
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using the local modularity threshold for pruning. Likewise, for MinerLSD, we
select and count vertex subgroups whose induced subgraphs satisfy a local
modularity threshold Im. In this way, we could confirm (again) that the final
number of output patterns is the same for both algorithms, as discussed above.

Table 3 Number of patterns total, developed, necessary and with required local modularity
(according to the respective threshold 0.005 ... 0.15) using a 1-core abstraction.

Data / #c | /0.005 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.15
S50 83

#lme 83 83 77 72 67 67 36
#nec 83 79 72 66 62 48 0

#lm 81 7 68 63 55 46 0

CoExp 196

#lme 178 166 150 133 125 114 64
#nec 146 137 104 64 34 10 0

#1lm 83 65 35 16 8 1 0

DBLP.P 2396

#lme 34 22 15 9 7 5 3

#nec 29 21 8 5 4 4 0

#lm 28 20 7 4 3 3 0

Lawyers 3221

#lme 2929 2512 | 1970 | 1640 | 1365 | 1146 | 295
#nec 1792 1131 | 495 201 99 38 0

#1lm 1238 738 308 87 39 5 0

DBLP.C 14820

#lme 179 66 24 16 9 7 1

#nec 145 43 15 4 3 2 0

#1lm 144 42 14 3 2 1 0

Figure 5 depicts the results of the applied five datasets, with the detailed
results in Table 3. Overall, the local modularity estimate is efficient in prun-
ing the pattern exploration, on different levels. For instance, in the Lawyers
dataset, MinerLSD finds #c=3221 patterns at level Im=0.005 and most of
them, i.e., 2929, have an oe(MODL) value above 0.005, not too far from the
#nec = 1792 patterns any top-down search would have to develop anyway to
select the 1238 patterns with local modularity MODL above 0.005. There is
then a slow decrease of #lme while the decrease of #nec and #lm is much
faster. Yet, pruning does still work, reducing the search effort considerably.

In contrast, for the larger datasets, e. g., for DBLP.P among the #c¢ = 2396
patterns only 34 have a local modularity estimate above 0.005, 29 of them have
to be developed and 28 do have a local modularity above 0.005. Furthermore,
in the DBLP.C dataset among the #c = 14820 patterns only 179 have a local
modularity estimate above 0.005, 145 of them have to be developed and 144
do have a local modularity above 0.005. When the local modularity threshold
increases, #lme keeps being close to #Im.

Overall, the Lawyers dataset displays moderate pruning efficiency, still al-
lowing to avoid to develop many nodes, and this is also the case for the S50 and
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CoExp datasets. In contrast, DBLP.C and DBLP.P indicate a very efficient
optimistic pruning in terms of the numbers of patterns.

Tables 4-5 show the runtime results of MinerLSD for the larger of the small
datasets (Lawyers, CoExp, DBLP.C, DBLP.P, runtime in seconds). Here, we
observe that MinerLSD is either in the same range or slightly faster than
MinerLLC for the small datasets, i.e., for Lawyers and CoExp. For DBLP.C,
we observe a strongly reduced number of patterns, while the runtimes are
always in the same range, especially for stronger (graph-)constraints. Here,
we considered k-cores, k = 1,2,3,5,7. Therefore, while strongly reducing the
number of patterns the additional computation using the estimate still keeps
the runtime of the algorithm in the same range as MinerLC most of the times.

In contrast to the other smaller datasets, for the larger DBLP.P dataset
we observe an increase in the runtime of MinerLSD compared to MinerLC.
However, this can be explained by some special characteristic of DBLP.P. The
DBLP.P dataset contains an extremely limited number of labels (32) which are
used in the dataset. Here, the extra effort of the estimation does not help too
much in decreasing the runtime, because the enumeration in the label space is
extremely fast, and hence the check of the patterns is mainly determined by
the core abstraction.

Medium Size Datasets Overall, MinerLSD detects closed patterns with the
benefit of pruning using the oe(MODL) > Im condition, i.e., only develop-
ing the #lme nodes according to Table 2. Furthermore, applying both the
k-cores and local modularity constraints makes it possible to find some bal-
ance between the k-core and the local modularity constraint to apply when
facing large datasets that are difficult to mine. This is investigated on the two
datasets LastFM and Delicious, i.e., those with the largest number of closed
core patterns when considering the 1-core and no local modularity thresholds —
these were not investigated in Tables 2-3, respectively. For these medium sized
datasets, we performed experiments using 1-cores, 2-cores, 3-cores, 5-cores and
7-cores with local modularity thresholds 0.01,0.02, 0.03, 0.04, 0.05, and 0.15;
the results regarding the number of closed patterns and the total CPU time
(including pruning/optimistic estimation) are shown in Figure 6 (runtimes in
seconds).

The benefit of applying local modularity constraints in the resulting num-
ber of closed patterns is, as expected, quite impressive. When no constraint
(outside the 1l-core) is applied, MinerLC in comparison finds 1,555,292 and
11,833,577 closed patterns, respectively. For MinerLSD, in the LastFM case
there are no strong differences when using 1-cores, 2-cores and 3-cores while
we know from Figure 2 that using 4-cores does have an important effect. Cor-
responding results are also observed for larger sizes of the respective k-cores.
Regarding the Delicious dataset, we observe a smaller number of patterns at
local modularity levels 0.04 and 0.05 with 1-cores than with 2 and 3-cores.
When no local modularity constraint is applied the closed patterns with 2
and 3-cores are a subset of the closed patterns with 1-cores, therefore the
results seem counterintuitive at first. However, for the same pattern the 3-
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Table 4 MinerLSD #Ilm, #lme and execution time - small datasets, compared to #c of
MinerLLC for same core constraints.

[ Lawyers  1-core #c = 3221 time = 1 ]
1 0.005 0.01 0.02 0.03 0.04 0.05 0.15
#lme 2929 2512 1970 1640 1365 1146 295
#lm 1238 738 308 87 39 5 0
time (s) O 1 0 0 0 0 0

2-core #c = 2080 time < 1
#lme 2080 1938 1670 1454 1265 1089 291
#lm 1262 775 322 104 41 7 0
time (s) O 0 1 1 0 0 1
3-core #c = 1302 time < 1
#lme 1302 1302 1215 1118 1024 920 282
#lm 1030 746 348 108 43 7 0
time (s) O 0 1 0 0 0 0
5-core #c = 463 time < 1
#lme 463 463 463 459 449 432 202
#lm 413 366 253 119 36 9 0
time (s) O 0 1 1 0 0 0
7-core #c = 155 time < 1
#lme 155 155 155 155 155 155 115
#lm 147 133 97 62 36 13 0
time (s) 1 1 0 0 0 1 0

[ CoExp 1-core #c = 196 time < 1 |
1 0.005 0.01 0.02 0.03 0.04 0.05 0.15
#lme 178 166 150 133 125 114 64
#lm 83 65 35 16 8 1 0
time (s) O 0 0 0 0 0 1

2-core #c =172 time < 1
#lme 162 153 141 125 118 108 64
#lm 89 78 51 26 12 3 0
time (s) O 0 0 1 0 0 0
3-core #c = 138 time < 1
#lme 134 129 118 109 102 95 56
#lm 75 64 42 23 12 0 0
time (s) O 0 0 0 0 0 0
5-core #c = 62 time < 1
#lme 62 60 57 51 48 47 31
#Ilm 31 23 12 4 2 1 0
time (s) 1 0 0 0 1 0 0
7-core #c =37 time < 1
#lme 37 37 36 34 33 32 19
#1lm 27 22 17 5 3 2 0
time (s) 0O 0 0 0 0 0 0

core subgraph is smaller than the 1-core subgraph and may have better local
modularity, which happens in the Delicious case.

Regarding the CPU times, we observe a considerable decrease using ap-
propriate local modularity thresholds for both LastFM and Delicious which is
especially important for weaker (graph-)constraints, i.e., with respect to the
applied k-cores. Using the appropriate modularity thresholds the runtime can
be considerably decreased which enables new approaches already for medium
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Table 5 MinerLSD #Im, #lme and execution time - DBLP.C and DBLP.P, compared to
#c of MinerLC for same core constraints.

DBLP.C  1l-core #C = 14820 time = 31 ]

1 0.005 0.01  0.02 0.03 0.04 0.05 0.15
#lme 179 66 24 16 9 7 1
#1lm 144 42 14 3 2 1 0
#time (s) 41 36 31 30 25 25 17
2-core #c = 1991 time = 20
#lme 101 35 19 10 6 5 1
#1lm 78 29 11 4 2 1 0
#time (s) 23 22 21 20 18 19 15
3-core #c = 319 time = 11
#lme 46 23 11 5 4 2 1
#lm 39 15 5 3 2 1 0
#time (s) 12 11 11 11 10 10 9
5-core #c = 20 time = 2
#1lme 8 3 2 2 2 1 1
#Ilm 7 3 2 2 1 1 0
#time (s) 3 3 3 3 3 3 3
7-core #c =2 time = 1
#lme 1 1 1 1 1 1 1
#lm 1 1 1 1 1 1 0
#time (s) 1 1 0 1 1 1 0
[ DBLP.P 1-core #c = 2396 time = 9 ]
1 0.005 0.01  0.02 0.03 0.04 0.05 0.15
#lme 34 22 15 9 7 5 3
#lm 28 20 7 4 3 3 0
time (s) 42 42 42 40 38 37 33
2-core #c = 661 time =
#lme 31 21 12 9 7 5 3
#lm 25 19 7 4 3 3 0
time (s) 38 39 39 38 37 37 33
3-core #c = 261 time = 7
#lme 27 20 10 7 6 5 3
#lm 21 12 5 4 3 3 0
time (s) 32 33 34 34 32 33 30
5-core #c =84 time = 6
#lme 12 9 7 7 5 4 5
#lm 12 9 6 4 4 3 0
time (s) 20 21 20 20 19 19 17
7-core #c = 42 time = 5
#lme 10 8 7 4 4 4 2
#Ilm 10 7 5 4 4 3 0
time (s) 12 12 12 12 11 11 10

sized datasets, e. g., concerning pattern exploration. Specifically, if we compare
the extra computation performed by MinerLLSD for computing the estimate,
in the Delicious case, the benefit is immediately obvious: MinerLLSD is always
much faster than MinerLC. The LastFM dataset shows a somewhat differ-
ent picture: with weaker core-constraints and at local modularity level of 0.01
MinerLC (which does not consider local modularity) is (slightly) faster than
MinerLSD. This is not that surprising, since MinerLLSD has to compute local
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modularity estimates and local modularities for all the developed patterns dur-
ing search. However, first this happens only for weak constraints, and second,
when using MinerLLC all these computations (in fact much more as there is no
pruning), would have to be made anyway in post-processing fashion for ob-
taining the patterns according to a local modularity threshold. Furthermore,
the runtime behavior of LastFM here is similar to DBLP.P and can also be
explained by the smaller number of labels compared to Delicious. Overall, this
shows that if we consider appropriate local modularity thresholds MinerLSD
already allows the analysis of larger datasets, especially in terms of larger sizes
of the labels, while comparable results (with respect to MinerL.C) are usually
obtained for weak (graph-)constraints. However, the efficient pruning of Min-
erLSD is important, e. g., for exploration, and also for the processing of larger
datasets, as we will also discuss in the next section for large datasets. Detailed
results are presented in Table 6 which also displays the #lme numbers.

Number of closed patterns
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Fig. 6 Number of patterns and execution time of MinerLSD on the DBLP.C, DBLP.P, Deli-
cious and LastFM datasets with 3-cores, 5-cores and 7-cores and local modularity thresholds
ranging from 0.01 to 0.15. The Y-axis of the topmost figure represents the number of closed
patterns outptut by MinerLLSD while the bottom figure displays the CPU time. Both Y-axis
are displayed using a logarithmic scale.

Large Datasets In this section, we present experiments of MinerLSD on two
large datasets, namely DBLP.S and DBLP.XL (see Table 1 for their character-
istics) to further explore the scalability of MinerLSD when using both k-core
and local modularity constraints. Again we do not use any threshold on the
pattern supports.

In Table 7, we report the results on DBLP.S and DBLP.XL with the
same local modularity thresholds as in the previous section and applying
k=1,2,3,5,7 and 7 k-core constraints, respectively. The scalability of Min-
erLLSD depends obviously on the size and density of the network but also
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Table 6 MinerLSD #Ilm, #Ilme and execution time compared to #c of MinerLC for same

core constraints.

[ LastFM  1-core  #c=1555292 time=2874
1 0.005 0.01 0.02 0.03 0.04 0.05 0.15
#lme 59528 16163 6817 3475 1920 52
#lm 17627 3633 1238 575 276 0
time (s) 5816 3400 2252 1605 1187 196
2-core #c = 471546 time = 2320
1 0.005 0.01 0.02 0.03 0.04 0.05 0.15
#1lme 50507 14752 6464 3349 1856 52
#1lm 16751 3646 1252 583 282 0
time (s) 4668 2915 1995 1452 1073 178
3-core #c = 161764 time = 1878
1 0.005 0.01 0.02 0.03 0.04 0.05 0.15
#lme 87211 39127 12694 5753 3039 1720 50
#lm 46400 14637 3377 1219 572 276 0
time (s) 4149 3422 2262 1596 1174 885 147
5-core #c = 26312 time = 1069
1 0.005 0.01 0.02 0.03 0.04 0.05 0.15
#1lme 24807 18103 8224 4272 2352 1412 46
#1lm 20562 9507 2680 1035 496 239 0
time (s) 2148 2013 1580 1206 857 706 117
7-core #c = 5859 time = 531
1 0.005 0.01 0.02 0.03 0.04 0.05 0.15
#lme 5854 5620 4031 2533 1517 994 39
#lm 5814 4482 1737 775 402 189 0
time (s) 902 953 877 738 594 486 87
[ Delicious  1-core #c=11833577 time=121934
1 0.005 0.01 0.02 0.03 0.04 0.05 0.15
#1lme 5655 776 255 121 71 4
#lm 2214 165 31 6 1 0
time (s) 5296 2018 1173 825 643 179
2-core #c = 130458 time = 1845
1 0.005 0.01 0.02 0.03 0.04 0.05 0.15
#lme 7251 1421 288 116 65 37 3
#1lm 5440 879 138 39 11 6 0
time (s) 1499 920 569 426 358 298 129
3-core #c = 11076 time = 269
1 0.005 0.01 0.02 0.03 0.04 0.05 0.15
#lme 1729 430 114 51 25 17 1
#lm 1419 311 71 25 9 6 0
time (s) 331 259 208 182 158 149 87
5-core #c = 576 time = 68
1 0.005 0.01 0.02 0.03 0.04 0.05 0.15
#1lme 296 89 25 14 7 6 1
#1lm 241 70 19 10 5 4 0
time (s) 77 71 66 64 62 61 55
7-core Hc=T7 time = 21
1 0.005 0.01 0.02 0.03 0.04 0.05 0.15
#lme 67 41 13 7 4 1 1
#1lm 66 34 10 5 2 1 1
time (s) 23 23 20 20 19 18 18
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heavily depends on the size of the attribute set and on the average number of
labels per vertex. DBLP.XL is then a real challenge as it is a large network
made of 929,937 vertices related by 3,461,697 edges and described by more
than 90,000 items, with an average number of 10.16 labels per vertex. The
efficiency of the optimistic pruning is then of primary importance.

As can be seen in the results table, optimistic estimate pruning using local
modularity is quite effective in achieving an efficient pattern mining approach.
For both datasets, we observe large reductions in the number of patterns,
while focussing on the interesting ones according to the applied local modu-
larity interestingness measure and the utilized local modularity thresholds. In
particular, the results for DBLP.S indicate the enormous pruning efficiency
- here the dataset for weaker constraints cannot be handled by MinerL.C at
all, where the computation did not terminate after 36 hours. The DBLP.XL
results indicate the same trend. Overall, this indicates the huge impact of op-
timistic estimate pruning using local modularity as provided by MinerLLSD for
handling large datasets.

Table 7 MinerLSD #lm, #lme and execution time compared to #c of MinerLC for same
core constraints

[ DBLP.S 1-core #c > 3457143 time = STOPPED AFTER 36h
1 0.005 0.01 0.02 0.03 0.04 0.05 0.15
#lme 1150 351 103 50 26 18 1
#lm 778 230 68 25 12 6 0
time (s) 59989 37645 24906 20634 17299 16167 8332

2-core F#c > 3584834 time = STOPPED AFTER 36h
1 0.005 0.01 0.02 0.03 0.04 0.05 0.15
#lme 958 303 94 44 24 16 1
#lm 722 218 64 24 12 6 0
time (s) 36302 25949 19065 16068 13869 12907 7073
3-core #c = 1576164 time = 45720
1 0.005 0.01 0.02 0.03 0.04 0.05 0.15
#lme 621 208 72 28 17 9 1
#Ilm 533 165 49 20 9 6 0
time (s) 19799 15531 12329 10221 9149 8276 5143
5-core #c = 44345 time = 3791
1 0.005 0.01 0.02 0.03 0.04 0.05 0.15
#lme 200 71 26 10 6 4 1
#lm 180 59 21 7 3 2 0
time (s) 4410 3760 3173 2877 2709 2533 2044
7-core #c = 5659 time = 881
1 0.005 0.01 0.02 0.03 0.04 0.05 0.15
#lme 62 24 10 4 2 1 1
#Ilm 62 23 10c 3 1 1 0
time (s) 1005 908 812 784 756 687 689

[ DBLP.XL  7-core #c = 9206 time = 93906
1 0.005 0.01 0.02 0.03 0.04 0.05 0.15
#lme 10 5 4 3 2 1 1
#Ilm 9 5 3 1 1 1 0
time (s) 113790 111079 110142 107967 103363 97326 96811
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6.2.6 Structural Pattern Set Analysis

In the following, we analyze the results of the proposed pattern mining method
MinerLSD in more detail, focussing on different graph statistics. We report
exemplary results on three datasets with different characteristics as outlined in
Section 5, i. e., the Lawyers, the CoExp, and the DBLP.C datasets. We consider
all patterns above a given local modularity threshold, combined with different
core abstractions. For computing the graph statistics, we analyze the respec-
tive induced subgraph W of each pattern, and consider the following: (1) the
vertex count Ny, (2) the edge count Eyw, (3) the scaled density (cf., [45]) of
subgraph W, i.e., the ratio of Ey divided by the number of edges of a com-
plete graph with the same number of vertices as W and multiplied (scaled) by
the total number of vertices; this measure approximately estimates the average
degree of the nodes contained in the community, cf., [45]. (4) Furthermore, we
also consider the fraction of outgoing edges, i.e., the edges connecting nodes
contained in the pattern with others not being part of the pattern subgraph,
to the set of edges Ey . The results are shown in Tables 8-11.

Table 8 Vertex Counts: Mean and standard deviation (in brackets) of the number of vertices
of the pattern support, i.e., of the induced pattern subgraphs, for different values of k and
the local modularity threshold Im.

Lawyers: n = 71 m = 556
k No Im Im=0.005 Im=0.01 Im=0.02 Im=0.04
1 12.7 (9.6) 17.2 (9.5) 20.11 (9.6) 24.4 (9.5) 29.8 (4.59)
2 15.3 (10.0) 16.8 (9.4) 19.35 (9.3) 23.4 (9.2) 27.7 (5.6)
3 18.0 (10.6) 18.0 (9.5) 19.49 (9.2) 22.9 (9.0) 26.8 (6.3)
5 23.2 (11.9) 21.7 (10.1) 21.50 (9.0) 23.7 (8.3) 27.3 (5.6)
CoExp: n = 151, m = 1849
k No Im 1Im=0.005 Im=0.01 Im=0.02 1Im=0.04
1 59.5 (44.0) 51.9 (35.8) 51.5 (32.8) 54.6 (31.6) 53.9 (21.9)
2 56.9 (41.5) 49.2 (31.9) 51.9 (29.4) 57.2 (25.9) 63.0 (18.5)
3 54.7 (37.9) 47.2 (31.6) 47.4 (28.8) 52.2 (24.7) 60.2 (18.3)
5 50.0 (36.2) 48.3 (34.2) 51.6 (33.1) 54.9 (28.9) 85.5 (9.2)
DBLP.C: n = 3140, m = 10689
k No Im Im=0.005 Im=0.01 Im=0.02 Im=0.04
1 8.3 (30.8) 124.0 (106.1) 231.3 (144.0) 373.9 (163.6) 631.0 (63.6)
2 12.5 (68.3) 124.6 (325.9) 159.5 (103.9) 248.0 (119.0) 434.5 (64.4)
3 21.7 (126.4) 117.3 (350.3) 250.7 (549.6) 604.6 (906.4) 1256.5 (1366.8)
5 62.6 (199.6) 164.9 (327.7) 351.3 (480.6) 511.0 (555.8) 904.0 (0.0)

Considering the results shown in Tables 8-9 we observe that, as expected,
increasing numbers of k tend to focus on larger communities, which is espe-
cially the case for weaker core constraints and larger local modularity thresh-
olds. In particular, we observe those trends for the local modularity for the
Lawyers and the DBLP.C datasets, while this is also pronounced for CoExp
regarding stronger constraints. For the DBLP.C network, in particular, we ob-
serve a rather strong effect. Overall, with no constraints quite small patterns
are detected. When the k-core constraint and the local modularity threshold
are increased, then larger patterns are detected which are also considerably
denser than those with no constraints. This can clearly be observed in Table 10
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Table 9 Edge Counts: Mean and standard deviation (in brackets) of the number of edges
of the pattern support, i.e., of the induced pattern subgraphs, for different values of k and
the local modularity threshold Im.

Lawyers: n = 71 m = 556

k No Im Im=0.005 Im=0.01 Im=0.02 Im=0.04
1 38.2 (58.0) 61.4 (61.4) 78.4 (64.0) 103.2 (67.1) 25.6 (63.9)
2 53.8 (66.3) 62.7 (61.9) 78.3 (64.4) 104.1 (67.3) 126.1 (68.1)
3 73.2 (75.4) (65.5) 82.2 (64.4) 104.5 (65.0) 124.8 (67.9)
5 121.7 (95.5) 109.9 (77.0) 108.2 (67.7) 123.7 (62.6) 135.7 (59.8)
CoExp: n = 151, m = 1849
k No Im Im=0.005 Im=0.01 Im=0.02 1Im=0.04
1 365.4 (473.9) 323.1 (512.8) 327.1 (497.0) 392.0 (579.7) 448.6 (653.1)
2 404.7 (488.8) 317.2 (492.9) 325.0 (483.7) 352.2 (492.9) 377.4 (529.4)
3 445.1 (496.5) 385.1 (535.0) 375.7 (525.1) 394.6 (529.5) 481.5 (598.9)
5 525.4 (499.6) 551.8 (563.1) 625.0 (548.9) 729.3 (544.9) 1495.0 (132.9)
DBLP.C: n = 3140, m = 10689
k No Im Im=0.005 Im=0.01 Im=0.02 Im=0.04
1 7.4 (91.4) 164.9 (192.5) 347.3 (282.5) 627.8 (340.3) _ 1278.0 (356.4)
2 22.8 (240.5) 316.81 (1183.3) 349.2 (271.3) 577.7 (328.6) 1126.0 (357.8)
3 66.7 (531.01) 419.7 (1487.5) 945.3 (2350.3) 2393.0 (3924.2) 5229.0 (5897.3)
5 347.3 (1246.9) 950.4 (2066.5) 2101.3 (3055.2) 3085.0 (3586.5) 5621.0 (0.0)

Table 10 Scaled Graph Densities: Mean and standard deviation (in brackets) of the scaled
densities of the pattern support, i.e., of the induced pattern subgraphs, for different values
of k and the local modularity threshold Im.

Lawyers: n = 71 m = 556
k No Im Im=0.005 Im=0.01 Im=0.02 Im=0.04
1 4.59 (2.63) 6.34 (2.51) 7.26 (2.46) 8.13 (2.61) 8.98 (3.27)
2 5.92 (2.56) 6.63 (2.47) 7.50 (2.38) 8.50 (2.42) 9.43 (2.82)
3 7.23(247) 742 (2.32)  7.92 (2.27) 8.80 (2.27) 9.45 (2.67)
5 9.89 (2.28) 9.74 (2.10) 9.82 (1.96) 10.38 (1.80) 11.38 (1.95)
7 12.23 (2.08) 12.15 (2.05) 11.99 (1.86) 12.20 (1.40) 13.14 (1.20)

CoExp: n = 151, m = 1849
k No Im Im=0.005 Im=0.01 Im=0.02 Im=0.04
T 9058 (8.34)  9.38 (9.54) 10.14 (9.83) 11.17 (11.12) 12.19 (13.90)
2 11.15 (8.37) 9.78 (9.09) 10.14 (9.18) 10.41 (9.85) 10.19 (11.46)
3 13.07 (8.60) 12.02 (9.66) 12.15 (9.83) 12.22 (10.44) 13.22 (13.20)
5 17.92 (8.25) 18.40 (9.00) 20.68 (8.50) 25.22 (5.72) 35.42 (0.71)

DBLP.C: n = 3140, m = 10689

k No Im Im=0.005 Im=0.01 Im=0.02 Im=0.04
1 1.73 (0.57) 2.60 (0.82) 2.93 (0.75) 3.38 (0.65) 4.02 (0.73)
2 3.15 (0.68) 4.15 (0.98) 4.33 (0.72) 4.66 (0.68) 5.13 (0.89)
3 4.73 (0.87) 5.90 (0.78) 6.35 (0.79) 6.74 (1.14) 7.89 (0.80)
5  7.30 (1.57)  8.55(1.94) 10.16 (2.02)  10.92 (2.17) 12.45 (0)

for increasing k-core and local modularity threshold values. Furthermore, when
we consider the ratio of outgoing edges vs. in-edges of a pattern shown in Ta-
ble 11, then we also observe the trend that the proposed approach focuses on
selecting denser pattern subgraphs with a stronger connectivity structure in
terms of the links within the subgraph, i.e., the in-edges. This is especially
obvious for higher k-core and local modularity threshold values, as exemplified
by the CoExp and DBLP.C datasets, e. g., for kK =5 and Im = 0.04 where the
number of in-edges strongly “dominates” the number of outgoing edges.
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Table 11 Ratio of outgoing edges to edges in the pattern subgraph (in-edges): Mean and
standard deviation (in brackets) of that ratio of the pattern support, i.e., of the induced
pattern subgraphs, for different values of k and the local modularity threshold Im.

Lawyers: n = 71 m = 556
k No Im Im=0.005 Im=0.01 Im=0.02 Im=0.04
1 10.99 (1 9.07) 4.90 (2.55) 3.68 (1.72) 2.68 (1.19) 1.80 (0.65)
2 6.58 (4.40) 4.81 (2.53) 3.67 (1.72) 2.64 (1.16) 1.81 (0.65)
3 4.62 (2.81) 4.14 (2.18) 3.46 (1.58) 2.58 (1.10) 1.84 (0.66)
5 2.74 (1.62) 2.82 (1.53) 2.69 (1.32) 2.19 (0.89) 1.56 (0.52)
CoExp: n = 151, m = 1849
k No Im Im=0.005 Im=0.01 Im=0.02 Im=0.04
1 4.95 (8.72) 2.46 (1.59) 2.13 (1.36) 1.62 (1.11) 0.69 (0.34)
2 3.88 (4.76) 2.69 (1.79) 2.48 (1.52) 2.24 (1.35) 1.69 (1.10)
3 3.58 (4.48) 2.83 (2.33) 2.58 (1.77) 2.41 (1.49) 1.82 (1.14)
5 3.75 (4.12)  2.89 (2.75) 2.24 (2.04) 1.57 (1.07)  0.16 (0.10)
DBLP.C: n = 3140, m = 10689
k No Im Im=0.005 Im=0.01 Im=0.02 Im=0.04
1 14.23 (13.72) 6.85 (1.94) 5.28 (1.19) 3.94 (0.80) 2.39( 0.41)
2 11.29 (10.37)  5.99 (2.09) 4.88 (1.17) 3.78 (0.77)  2.44 (0.50)
3 11.44 (8.04) 5.96 (1.90) 4.57 (1.64) 2.96 (1.82)  1.27 (1.68)
5 10.99 (8.22)  5.99 (3.07)  3.13 (2.53)  1.99 (2.22) 0.42 (0)

6.2.7 Pattern Selection and K-Core Abstraction

In this section, we provide examples of patterns demonstrating the benefits of
pattern selection using local modularity and k-core abstraction. In particular,
we discuss illustrative examples from two different datasets — the Lawyers and
the (larger) DBLP.C dataset.

Lawyers Dataset In order to demonstrate the effectiveness of the pattern ex-
ploration and selection methodology using abstract closed pattern with k-
cores and local modularity, we exemplify that with the two patterns shown
in Figure 7. Here, we show two similar patterns in terms of Jaccard similar-
ity (0.52) considering the nodes of the respective pattern-induced subgraphs.
While the patterns are very similar regarding the overlap and their size, they
have quite different local modularity values referring to their connectivity
structure. The left pattern described by 35 < Age < 65 AND Seniority < 5
AND Status = Partner, with a size = 24 of the set of nodes in its sub-
graph, is considerably denser with a local modularity of MODL = 0.058, com-
pared to the pattern on the right; the latter is described by Age < 40 AND
Seniority < 30, with a size = 23 of the pattern support and a local modular-
ity of only MODL = 0.013. Therefore, while both patterns are abstract closed
patterns according to similar support criteria and the 5-core abstraction, a
higher modularity threshold, e.g., MODL > 0.05 would only select the first
(left pattern in Figure 7) instead of the right pattern. From the description,
we can also observe that the selected (left) pattern is more interesting, since it
provides a more precise description. In the figures, we depict in red the edges
and the vertices in the pattern subgraph; in gray, we show the out-edges of the
pattern (i.e., one vertex of a gray edge is contained in the pattern extension
and the other vertex is not); in light gray we depict the rest of the graph.
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Fig. 7 Example patterns from the Lawyers dataset: Both patterns are similar 5-cores, with
a Jaccard similarity considering the nodes of the respective pattern-induced subgraphs of
0.52. The pattern on the left (described by 35 < Age < 65 AND Seniority < 5 AND Status =
Partner, with size = 24) is considerably denser with a local modularity of MODL = 0.058,
compared to the pattern on the right (described by Age < 40 AND Seniority < 30, with
size = 23) which only has a local modularity of MODL = 0.013. In the figures, we depict in
red the edges and the vertices in the pattern extension, in gray the out-edges of the pattern
(i. e., one vertex of a gray edge is contained in the pattern subgraph and the other vertex is
not) and in light gray the rest of the graph.

Fig. 8 Illustrative patterns (DBLP.C). Left: 5-core empty pattern with a local modularity of
MODL = 0.1223; middle: 3-core empty pattern with a local modularity of MODL = 0.0430;
right: 3-core “mine” pattern with a local modularity MODL = 0.0503. In the plots, red
color indicates the core graph (i.e., the in-edges of the pattern), blue color shows the edges
incident to the nodes of the core graph, gray depicts the edges of the rest of the graph.

DBLP.C Dataset In order to show the impact of pattern selection and k-core
abstraction, we first consider the local Modularities on k-cores with increas-
ing k. For analyzing the impact of the k-cores we firstly consider the empty
pattern, thus only focussing on the abstraction by the applied k-core. For
the local modularity values of the empty pattern, for k = 2,3,4,5 we ob-
serve MODL = 0.0075,0.0430,0.0915,0.1223, respectively. Thus, we observe
the clear trend that increasing k yields patterns with higher connectivity struc-
tures as shown by the increasing local modularity values; similar trends are
obtained for the other datasets. This complements our results in the last sec-
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tion, where we discussed, how increasing k for the k-core abstraction together
with increasing local modularity thresholds focuses on larger and more “inter-
esting” patterns as measured by the local modularity quality function.

Figure 8 illustrates these findings: The two left graphs show examples of
the k-cores for the empty pattern, specifically, for the 5-core with the highest
local modularity, and the corresponding 3-core pattern. Areas in red indicate
the core graph — both vertices and edges, blue color shows the remaining edges
incident to the nodes of the core graph, while gray depicts the edges of the
rest of the graph. It is easy to see that both the 3-core (2223 vertices and
9399 edges) as well as the 5-core (904 vertices and 5621 edges) demonstrate
a considerably strong connectivity structure. Finally, the graph plotted on
the right of Figure 8 shows a specialization of the empty pattern on the 3-
core, i.e. the pattern given by the label “mine”. This pattern is obviously
smaller (covering 290 vertices and 1059 edges) than the empty pattern, while
its modularity structure is slightly better (MODL = 0.0503). The left plot in
Figure 9 shows the “mine” pattern in detail, as a “zoom-in” focussing on all
edges incident to nodes contained in the pattern subgraph.
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Fig. 9 Detailed view: “mine” pattern (left), with local modularity MODL = 0.0503 vs. the
lower-quality “algorithm” pattern (right), MODL = 0.0072. In-edges (red), out-edges (blue).

Figure 9 illustrates the selection process for different 3-core patterns in
detail, providing the “mine” pattern (covering 290 vertices and 1059 edges,
MODL = 0.0503) that is selected according to a local modularity threshold
Im = 0.04 and the “algorithm” pattern (covering 45 vertices and 93 edges,
MODL = 0.0072) which is a further specialization of the 3-core empty pat-
tern. As we can clearly observe for the “mine” pattern, its structure is more
interesting concerning its connectivity — i.e., its distributional unusualness
compared to the expectation modeled by the null-model. This is a represen-
tative illustration, how the proposed approach using local modularity pruning
achieves a better pattern selection method for the same core constraint(s).
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7 Conclusions

In this paper, we have proposed the novel MinerLSD method for efficient local
pattern mining on attributed networks. It enumerates local patterns and asso-
ciated subgroups in attributed networks, utilizing different pattern and graph
mining techniques. In particular, MinerLLSD is based on three main basic ideas:
First, enumerating only closed patterns, which is particularly beneficial when-
ever items have dependencies. This occurs as soon as some attributes, either
numeric or hierarchical, have to be translated into various items to express
interesting patterns, e. g., interrelated intervals and hierarchical dependencies.
Second, we focus on reducing pattern subgraphs to core subgraphs which al-
lows both to strongly reduce the number of patterns and to focus on essential
parts of graphs. Third, we select cohesive subgraphs during the search ac-
cording to topological quantities as local modularity and, above all, to allow
pruning by using optimistic estimates of the local modularity measure.

We performed a set of experiments in order to estimate the impact of the
investigated approaches, for which we included two baseline methods, i.e.,
MinerLC and COMODO for comparison. The purpose was then to investi-
gate 1) the pruning efficiency of MinerLSD using the local modularity estimate
as implemented in COMODO, ii) the impact of searching for closed patterns
(as implemented in MinerLC) and therefore enumerating only the cohesive
subgraph associated to the patterns, and iii) the added potential for pattern
selection based on the combination of both k-core abstraction and local mod-
ularity selection. The latter allows to strongly reduce the number of patterns
while focussing on essential parts of the graph which leads to more interest-
ing high quality patterns. For our experiments we used a number of datasets
with different characteristics, also ranging from small to large datasets in order
to estimate the scalability of MinerLSD. Overall the result indicated effects
that were always positive, and sometimes even crucial, for allowing to han-
dle even rather complex and large datasets with reasonable pattern set sizes
and computational effort — without using any minimum support threshold.
Specifically, the results of our experiments show the efficiency of the presented
method. Furthermore, we have presented exemplary results showing the ben-
efit of pattern selection and abstraction which demonstrate the efficacy of the
proposed MinerLSD approach. Overall, by implementing the different ideas.
and techniques summarized above in the novel MinerLSD method, i.e., uti-
lizing closed patterns, graph abstractions, optimistic estimate pruning using
local modularity), we obtain a very flexible tool that allows to handle large
graphs with adequate constraints on the subgroups and patterns to discover.

For future work, we intend to characterize the attributed graphs in terms
of which pruning method is especially efficient, and to investigate other mea-
sures than local modularity in order to estimate their pruning efficiency. Fur-
thermore, we aim to investigate other core definitions than k-cores as well.
Also, focussing on sets of (local) patterns, and their relations, in order to ob-
tain, e.g., the most diverse, representative, interesting, and relevant results,
cf., [13,42,49,79] is a further interesting research direction to consider.
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