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Abstract—Transformer models have shown significant ad-
vances recently based on the general concept of Attention —
to focus on specifically important and relevant parts of the
input data. However, methods for enhancing their interpretability
and explainability are still lacking. This is the problem which
we tackle in this paper, to make Multi-Headed Attention more
interpretable and explainable for time series classification. We
present a method for constructing global coherence representa-
tions from Multi-Headed Attention of Transformer architectures.
Accordingly, we present abstraction and interpretation methods,
leading to intuitive visualizations of the respective attention
patterns. We evaluate our proposed approach and the presented
methods on several datasets demonstrating their efficacy.

Index Terms—Deep Learning, Transformer, Attention, Visual-
ization, Comprehensibility, Interpretability, Explainability, Time
Series Classification, Global Class Representation

I. INTRODUCTION

Transformers [1], [2] are a class of prominent Deep Learn-
ing models. One of their key concepts is the use of Atz-
tention [1], [3], such that — intuitively — the learning
process focuses on specifically important and relevant parts
of the input data. Such models showed significant advances
recently. However, one of their major drawbacks — which
they share with general Deep Learning (black box) models
— concerns their interpretability and explainability, which are
still lacking, e.g., [4]. This becomes even more noticeable
in complex domains such as for sequential data, in particular
for time series data with continuous value domains etc [5].
Here, explainability, transparency and understandability of
the applied complex models are often crucial for practical
applications. This concerns, for instance, enhancing trust in
a specific modeling approach, the application of the particular
model and its results, respectively, e. g., for decision support
in sensitive domains [5], [6].

In this paper, we present an approach for constructing
global coherence representations (GCRs) from the Multi-Head
Attention (MHA) [1], [7] mechanism of the Transformer
architecture. In particular, we identify interpretability and co-
herences in Transformer attention for time series classification.
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We present abstraction and interpretation methods, supported
by visualizations of the respective attention patterns. In this
way, the Transformer model itself as well as its task, get more
accessible, understandable and comprehensible for humans.

We define a GCR as the aggregation of a set of attention

matrices (MHA) into a set of unified symbol-to-symbol matri-
ces (or representations based on them), indicating coherences
i.e., relations between pairs of symbols at all considered time
steps: that is, there is a strong coherence between two symbols
if the attention value — as constructed by the applied attention
information extraction method — in our representation is
high. Regarding the interpretability, we focus on global inter-
pretability [6] of Transformers on classification tasks, i.e., on
the level of classes, in contrast to local approaches, e. g., [8],
which target explainability on local attention matrices. Our
proposed approach features three main steps: (1) Data to
symbol abstraction, (2) extracting attention information from
MHA, (3) creating a Coherence Representation. With this, we
aim to obtain GCR models which are interpretable such that
their classification decisions can be comprehended by humans,
by extracting the attention information on a global per class
level. Thus using attention as a medium to better understand
the classified data. To the best of the authors’ knowledge, this
is the first time such a global approach has been proposed.
Our contributions are summarized as follows:

1) We propose an approach for abstracting, extracting and
identifying interpretability and coherence patterns in
Transformer attention on time series data.

2) We present a novel visualization method with different
levels of abstraction, enabling coherent and downsized
attention to enhance the global interpretability of the
underlying classification task.

3) Our evaluation demonstrates the efficacy of the proposed
approach, where we show how even simple abstraction
methods can extract relevant classification information.

The rest of the paper is organized as follows: Section II

summarizes related work. After that, Section III presents
our approaches on multiple GCR variants. Next, Section IV
discusses our results. Finally, Section V concludes with a
summary and interesting directions for future work.
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II. RELATED WORK

In the following, we outline related work regarding Trans-
formers, as well as visualization options for making them more
understandable, and summarize symbolic abstraction methods.

A. Transformers and Attention

Transformers [1], [2] have emerged as a prominent Deep
Learning architecture for handling sequential data [1], e.g.,
for natural language processing (NLP). Transformers have
also recently started to be successfully applied to time series
problems [9], e.g., addressing efficient architectures [2] and
enhanced prediction approaches [10] on time series.

In [11] the pattern filter ability of Transformers in different
attention layers and heads was analyzed. They showed that
the first Transformer layers perform a more generic pattern
detection referred to as global averaging. In contrast, the later
layers are the ones still trained at the end while containing
more class specific filtering. The authors further reasoned that
the MHA is encoding and storing multiple patterns for per-
forming classification. In this work, we build on this principle
in order to provide such summarized patterns of interest, which
are abstracted into global patterns for specific classes. Here, we
specifically focus on the interpretability of those patterns with
respect to the individual classes of a classification problem,
and provide a process-based approach for this task.

Regarding our data domain, we focus — in particular — on
time series tasks which are still quite infrequently researched
in combination with Transformers due to their memory limita-
tions; however, Transformers are especially interesting thanks
to their ability to handle long-term dependencies [10]. It is
important to note that the given limitations of Transformers
are currently a rather strong research topic in general; recently
many slightly modified Transformer architectures arose which
take on different limitations of the original Transformer [2].
In comparison to those approaches we consider the MHA in
its original form [1] to create a standard baseline. Therefore,
we also do not focus on scalability/runtime, but rather on
comparability between the given tasks under consideration of
our abstraction, interpretation and visualization approaches.

B. Analysis and Interpretation of Attention on Time Series

Regarding the analysis of Atfention, most of the methods
for MHA analysis and visualization — in order to increase
their understandability — are found in the context of computer
vision (CV) [12] and NLP [13]-[15]; here, the input is
already rather accessible for humans. Those techniques use
the properties of attention to highlight relations between —
e.g., words [13]-[15] — and can be used to analyze linguistic
structures, e.g., cf. [16], or to detect unwanted biases, as
described in [13]. While not limited to Transformers, eX-
plainable Artifical Intelligence (XAI) is an important research
direction for providing interpretation and transparency onto the
model and/or its results, yet still with several open challenges,
e.g., [6], [17]: In particular this holds for time series data,
due to the unintuitive nature of the data (compared to NLP or
CV) [5]. E.g., on time series applicable methods like class

activation mapping (CAM) [18], [19] are based on CNNs
and use also a somewhat similar highlighting representation
as attention (cf. [12]). Compared to the extra layer in CAM
[18], the MHA is a core element in the learning process,
such that the later part of the Transformer model interprets
the attention matrices information, in order to approximate an
interpretation. A simple form of Attention was also previously
used on time series data with RNNs. [20] found though, that
the interpretability properties only work sub-optimally. But
they did not look into attention of Transformers itself. On the
other hand, [4] showed that MHA is at least partly interpretable
even though multiple heads can be pruned without reducing the
accuracy [21]. In addition, [22] demonstrated that it is possible
to reduce words from sentences via MHA, also showing that
attention can abstract important key coherences, while inputs
with lower attention can be neglected for the purpose of
interpretability. As we discussed and presented in [8], those
attention properties can be used to abstract time series data
limited by attention thresholds, defined in a human-in-the-
loop process. Our combined attention vector provided some
form of noise reduction properties to filter out less important
information, while maintaining quite a similar accuracy score.
Therefore, MHA can in principle be used for transparent
interpretations of classification tasks under certain conditions
and with specific methods. However, this is currently being
limited to local approaches for interpretation. Hence, we
extend on this to gain a better understanding of MHA with
time series data, while we focus on a global abstraction and
interpretation. To the best of the authors’ knowledge, this is
the first time that such a global approach has been proposed.

C. Symbolic Abstraction — SAX

The Symbolic Aggregate Approximation (SAX) is one
prominent example of an aggregation and abstraction tech-
nique in the area of time series analysis, [5], [23], [24]. It
transforms the continuous time series into a discrete symbolic
string representation — both facilitating interpretation as well
as abstraction, thus resulting in a high-level representation of
time series data. Due to the numeric nature of time series
[5]1, [9], [10], most MHA interpretation methods are not as
accessible. Thus, the visualization and its interpretation is
harder to make sense of for human non-experts. Here SAX can
act as connection to the NLP context, which is more accessible
for humans and the methods described in Section II-B. In [8],
we already applied SAX on time series data with Transformers
and showed its abstraction potential and benefit — limited to
a local setting, while we focus on a global one in this paper.

III. METHOD

In this section, we describe our proposed approach. We
first outline an according process model capturing the respec-
tive processing pipeline. After that, we discuss the applied
Transformer model and describe the different GCR variants as
well as the methods for global abstraction and interpretation.
Finally, we discuss global class validation — as an (integrated)
validation step of the respective representation.



A. Process Model.

Figure 1 details the process on our approach for identifying
coherences towards interpretability of Transformer attention
in time series data. The presented process adapts ideas from
visualization approaches, e.g., [8] on Transformer attention;
however, our proposed model and pipeline — as already
discussed above — does not focus on the local interpretation
but on the global one — as a novel contribution and method.
In particular, this relates to the extraction of attention data into
the proposed coherence representations.

As shown in Figure 1, first the data is preprocessed (scaling,
SAX). After that, a Transformer model is trained. Next, we
extract the attention information for creating different GCR
variations: that is, applying one of the aggregation strategies
described in Sections III-C-III-D on all individual attention
matrices of the whole trainings set, which are contained in
the MHA structure of the Transformer. The resulting ma-
trix/matrices can then be visualized in order to enhance human
comprehensibility and understandability of the GCR model,
and to further also provide a view on the underlying problem
with respect to classification of the time series data. In order to
assess our attention coherence representation and visualization
— as an abstraction of the original model’s attention —
we also include a further validation step: We perform a
classification with only our global class representation, to show
to which extent the extracted representation is representative.

Standardize H Apply SAX + . Extract Attention
[ Data Mapping Train Model Information
Validate Visualization

Fig. 1. Processing pipeline, from preprocessing the data, training the model,
to extracting, visualizing and validating the obtained representation.
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B. Transformer Model

In its original form [1], a Transformer consists of an encoder
and a decoder, but for classification problems typically only
the encoder is used — as we do in this work. At its core is
the MHA which uses attention to learn important points to
focus on. This attention comprises an attention matrix, which
highlights relations between elements of the inputs. To be
concrete, an attention matrix shows basically how strongly
one input at a specific position attends another input at another
position. These matrices are calculated and applied inside the
Scaled Dot-Product, for which multiple ones exist inside the
MHA, e.g., see Figure 2. In most cases the so-called self
attention is applied, where all inputs to the MHA are the same
(i.e., V, K, and @ in Figure 2). Basically, we want to make use
of the coherence property of the attention matrices to group
the most relevant features into a global class representation.

Figure 2 shows an example of a Transformer encoder
corresponding to our applied model. It is important to note that

we do not use a classic word embedding, but simply map each
symbol to a number in the interval of [—1,1] as we already
suggested in [8], because it preserves position information in
the y-axis; otherwise, this would need to be approximated
using an embedding, which was, however, in contrast to e. g.,
NLP problems found to be a sub-optimal solution, e. g., as we
further discussed in [8] in detail.

1) Data Preprocessing: First, all data is scaled to unit
variance with the Sklearn [25] standard-scaler, before all
values of each time series are transformed into symbols using
SAX — both fitted on the training data.

To support easy human interpretability while accommodat-
ing discriminating power at the same time, we can apply
several scales and granularity in the number of symbols. In
our experimentation described below, we abstracted to five
symbols (5 bins), i.e., to a value range of very low, low,
medium, high and very high, where we used a uniform
distribution to calculate the bins. It is important to note that
by using the SAX algorithm some important classification
information can get lost. This needs to be considered when
choosing the number of symbols for the respective dataset,
which can be optimized in an interactive approach. We defined
a mapping of the ordered set of symbols to the interval
[—1,1] and then mapped the values of the original sequence
accordingly as we suggested in [8]; in our context, we map the
respective 5 symbols to the ordered values (-1, -0.5, 0, 0.5, 1).
In this way, we keep the ordering information of the values of
the time series, thus preserving the known trend information,
rather than approximating it with a word embedding.

2) Model: As for the model!, we decided to use a quite sim-
ple attention model with acceptable accuracies on all datasets,
to make the results of all datasets somewhat comparable.
We did not optimize each model for one dataset nor for
the combination of all, but tried out different parameters,
which performed quite similar with respect to the accuracy
and abstraction. We used a 2-layered Transformer encoder,
based on the original paper [1], with 6 heads, a head size of 6
and a dropout of 0.3, followed by a dense layer which takes in
the flattened encoder output. As a final output layer we used
a sigmoid-based dense layer with one neuron for each output-
class. For training, we used an Adam optimizer with 10000
warm-up steps; for the loss function we took the mean squared
error. The architecture of our model is shown in Figure 2.

C. Global Coherence Representation (GCR)

Compared to a NLP or CV context, time series data is
even harder to take into relation due to the real-valued input
space. As we already suggested in [8], a symbolification of a
time series reduces this limitation. By exploiting the special
useful characteristic of symbolified time series (compared to
NLP), namely the small vocabulary size, we can summarize
the model’s attention to multiple symbol-based GCRs, which
provide a more global view on the accumulated attention val-
ues per symbols for each position, as shown in the Figures 3-9.

'Model with code is provided at:
https://github.com/cslab-hub/Global TimeSeriesCoherenceMatrices
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Fig. 2. Our applied architecture including the Transformer encoder, adapted from the architecture in [1].
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Fig. 3. FCAM via the relative average GSWA and Max-Sum LAAM, w.r.t.
class 4 from the Synthetic dataset; representing a slowly falling trend.

This means that we can now highlight where an individual
symbol is mostly present and how its attention values cohere
to other symbols. To give a more class-centered view we create
a GCR for each class, hence only using data from the repre-
sented class. Below, we present three variants how to build a
GCR, namely a full, column reduced, and global trend GCR,
where each one builds upon the previous representation and
gets more abstract per step. For each representation multiple
variations based on different attention aggregations can be
created. We present our analysed aggregations in Section III-D
after introducing the general idea of each representation. This
aggregation can be viewed as a special attention interpretation
step, i. e., respective to how a Transformer applies/exploits the
attention information in a more complex manner.

1) Full Coherence Attention Matrices (FCAM): The FCAM
highlight all relations from symbol z to symbol y, for all
x,y € V, with vocabulary V', for each given class via multiple
matrices. Hence, it shows a more globally structured overview
of how one symbol highlights any other symbol at any given
position. Accordingly, we create n2 x k matrices where n is the
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Fig. 4. FCAM via the relative average GSWA and Max-Sum LAAM, w.r.t.
class 6 from the Synthetic dataset; representing a sudden falling trend.

vocabulary size and k is the number of classes. For NLP tasks,
this would not be feasible, e.g., due to the large vocabulary
sizes (in the range of thousands of elements). The values of
one FCAM matrix are aggregated and mapped over to the cor-
responding attention values (symbol z to y at position (7, j))
— we call this step Global Symbol Wise Aggregation (GSWA)
— inside of a Local Attention Aggregation Matrix (LAAM)
of each training sample. LAAM is the matrix resulting after
aggregating (in any specific way) all attention matrices of
the Transformer formed by one input (i.e., referring to the
combination step in [8]). More details about the different
options for LAAM and GSWA are presented in Section III-D.

Below, we always display the mapped discrete numbers of
each symbol to better represent the value relation between
each symbol. The examples in Figures 3-4 show how such
FCAM look like. It can further be seen how multiple structural
features per class emerge which can indicate the global pattern
per class. The figures show two rather close classes from
the Synthetic dataset. The left class represents a falling trend
over a longer period of time, while the right one represents a
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Fig. 5. CRCAM over the relative average GSWA and Max-Sum LAAM for
class 4 from the Synthetic dataset; representing a slowly falling trend.
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Fig. 6. GTM with maximum GVA, r. average GSWA and Sum-Sum LAAM
for class 4 from the Synthetic dataset; representing a slowly falling trend.
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Fig. 7. Example original time series for class 4 (left; slowly falling trend)
and class 6 (right; sudden falling trend) from the Synthetic dataset.

rapid trend decrease in the data. The sequence positions of the
symbols on the y-axis (rows) and x-axis (columns) both start
in the bottom left corner, hence the bottom left shows how
the first symbols highlight themselves. A FCAM matrix can
be interpreted as follows: Given one symbol and its position,
how strongly does it highlight another symbol at any other
position. In Figure 3 we observe, e. g., that matrix -1 to -1 is
focused on the top right corner while 1 to 1 is focused on the
bottom left. This shows, e.g., that -1 is mostly found at the
end of the time series and 1 mostly at the beginning, showing
a falling trend. In contrast, in Figure 4 a similar distribution
can be seen, but the attention blocks in the corners are broader,
hence indicating a longer period of 1s and -1s which represents
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Fig. 8. CRCAM over the relative average GSWA and Max-Sum LAAM for
class 6 from the Synthetic dataset; representing a sudden trend fall.
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Fig. 9. GTM with maximum GVA, r. average GSWA and Sum-Sum LAAM
for class 6 from the Synthetic dataset; representing a sudden trend fall.

a later sharper falling trend. Regarding the interpretability of
both examples, we observe that the MHA mostly focuses on
the duration of 1s and -1s at the beginning and end of the
time series for classification. For comparison, Figure 7 shows
examples on how the original classes could look like.

2) Column Reduced Coherence Attention Matrices (CR-
CAM): To bring up the difference of each class even more
clearly and more compactly we accumulate all symbols in the
y-axis to the one corresponding symbol in the x-axis for all
matrices from the FCAM (e. g., the most left column in Figure
3 is combined to one matrix). Correspondingly, we obtain a
new set of matrices as shown in the Figures 5-8 with the same
class example as before. Each matrix now shows how strongly
any possible symbol x € V at a given position highlights
a specific other symbol at each of the possible positions. In
this visualization format the difference and general trend of
each class can be observed even better; e. g., Figure 5 shows a
small iterative down shift in time. Also, the attention blocks of
Figure 8 are bigger and somewhat separated into two bigger
blocks, indicating a fast falling trend somewhere in the middle.

3) Global Trend Matrix (GTM): Our goal with this reduc-
tion is to show the general learned shape of the attention
layers. One challenge though is that a single reduced time
series shape does not adequately capture the problem’s com-



plexity. Therefore, we reduce our matrices further into a single
Global Trend Matrix, which highlights the typical flow of
the time series with an additional visualization of the typical
attention strength. Using Global Vector Aggregation (GVA)
we aggregate the y-axis of each matrix from the CRCAM to
a vector, and combine all vectors to a single matrix based on
the relative position of each symbol. An example for class 4
and 6 of the Synthetic dataset can be seen in the Figures 6-9.
Here, the trend as seen before is represented in one single
simple matrix. When interpreting the matrices it is important
to keep in mind that attention is only partly interpretable and
therefore the Global Trend Matrix needs to be analyzed with
caution, which is in general also the case for other similar
attention visualizations. Nevertheless, this visualization can
compactly represent the learned state of the MHA, presenting
the underlying problem and open up further analyzing steps —
which we further show and discuss in Sections IV and IV-E.
It is worth noting, that some patterns of each visualization
partially result from the typical position of each datapoint for
a class — where no data exists there cannot be any attention
— but gets further highlighted by the attention strength. To
demonstrate the impact of our visualizations, we present our
aggregation and validation processes in the next section.

D. Global Class Validation

Overall, we aim to use the GCRs to see if we can interpret
them as an approximation for a global classification summary
w.r.t. the given classes. One open question is then how to
aggregate and evaluate those representations, because during
the LAAM construction often simply the average of all atten-
tion matrices and their flat attention values is taken [15], [26],
[27]. Below, we describe multiple other combination strategies
based on simple arithmetic operations and descriptive statistics
— which makes them conceptually simple to evaluate and
interpret; since our process is extensible in general, these can
then be complemented as needed. Furthermore, we introduce
an evaluation method for GCR validation, to further analyze
and understand the nature of attention in a global interpretabil-
ity context on time series data. This could also help to filter
out less important information for each class visualization,
similar to what [8] proposed in a local context. Because
the Transformer architecture can somehow use attention to
improve the model’s accuracy for multiple problems, we just
need to find out how to handle attention correctly.

1) Aggregations: To combine the attention matrices of
the heads and layers for one given input to get a LAAM,
we introduce four aggregations, constructed with all possible
combination of the sum and the maximum, when we first
intertwine the heads and afterwards the layers. Max-Sum
for example would stand for the maximum of the attention
matrices of all heads per each layer and the sum of the
resulting attention matrices of each layer. The resulting LAAM
per possible training input are the base on which we calculate
the GCR variations described in Section III-C.

For the GSWA step to create the GCR, all attention values
inside a LAAM of the training data needs to be mapped into

the corresponding symbol-to-symbol structure of the FCAM
and aggregated via e.g., the sum. Thus, the bigger and
more complete the training data is, the better is the global
representation. One alternative for the GSWA step is to divide
each element of the matrix, i.e., each data point by how
often a value is given for this particular matrix position. This
is done for each matrix when calculating the FCAM. We
call this the relative average (r. average). When calculating
CRCAM, it is always based on FCAM constructed by one
of those two GSWA approaches. We decided to use those as
the main strategies because the sum strongly depends on the
quantity of each data point while reducing the influence of
the flat attention value; vice versa for the relative average.
Therefore, we argue that both approaches can have their
benefits depending on the given distribution and application.

When performing the GVA to construct the GTM, we try
for each base GSWA — the sum or the r. average — three
options, namely the maximum, the average and the median. It
is worth keeping in mind that taking the sum is as meaningful
as taking the classic average if each sample count (e. g., head
count) is always the same for each matrix point. We therefore
did not additionally look into the average or vice versa.

2) Evaluation: For evaluation, we take samples from the
test set and classify them with the help of our GCR. For
this, each value of the time series is taken and all related
attention values inside the GCR will be summed into a score
per class. For the FCAM and CRCAM, this means that for
each given value, the attention to each other value in the time
series is taken, resulting in n? attention values per test trial. For
the GTM, we just need to consider n attention values. After
combining all kinds of matrices to a global representation, it is
not straightforward to compare the attention values; thus, we
define an attention maximum as the maximal attention score
any time series could get per class. The final classification
score of a trial is then calculated by summing up all related
attention values for each class and dividing them by the class
maximum. The class with the highest percentile fit is then
predicted for classification. Just taking the flat attention value
as a score performed considerably worse, compared to our
more advanced/normalized approach.

As a result we obtain 10 x 4 accuracy scores to show all
analyzed aggregations for each dataset, as depicted in the result
tables in Section IV. We are aware that those combination
methods are not complete and a lot more can be formalized,
in principle. However, the ones we propose facilitate simple
application and evaluation, already provided good results while
giving a better insight into the characteristics of MHA from
the Transformer model. In addition, our approach is modular
in that sense that it can be extended by further combination
strategies for constructing specialized further representations.

IV. RESULTS

In this section, we present the results of our experimentation
evaluating our approach using four datasets described below.
We applied a standard 5 fold-cross validation procedure. The
final validation and test statistics are given by the averages



TABLE I

POWER DATASET: ABSTRACTION ACCURACIES RESULTS ON DIFFERENT GCR VARIATIONS

Power

Max-Max

Max-Sum

Sum-Max

Sum-Sum

FCAM

Sum
R. Average

0.8322 £+ 0.0209
0.5222 + 0.0306

0.8256 £+ 0.0307
0.5410 £ 0.0568

0.8133 £ 0.0395
0.5433 + 0.0565

0.8000 £ 0.0344
0.5800 + 0.0826

CRCAM

Sum
R. Average

0.8911 £ 0.0108
0.5833 + 0.1192

0.8956 + 0.0289
0.6122 + 0.1217

0.8778 £ 0.0478
0.6767 + 0.0924

0.8489 £ 0.0356
0.7367 + 0.0431

GTM

Max of sum
Max of r. average
Average of sum
Average of r. average
Median of sum
Median of r. average

0.8978 £+ 0.0198
0.5111 £+ 0.0105
0.8956 + 0.0151
0.6011 £ 0.1528
0.8844 + 0.0244
0.6089 + 0.6089

0.9244 + 0.0090
0.5089 + 0.0130
0.8933 £ 0.0266
0.6322 + 0.1634
0.8856 + 0.0414
0.6756 + 0.1645

TABLE 1T

0.9100 £ 0.0301
0.5144 £+ 0.0185
0.8678 + 0.0514
0.6811 £ 0.1408
0.8633 & 0.0517
0.7389 + 0.1232

0.9000 £ 0.0423
0.5656 + 0.1038
0.8467 £ 0.0384
0.7511 £ 0.0860
0.8344 £ 0.0432
0.7811 £ 0.0696

PLANE DATASET: ABSTRACTION ACCURACIES RESULTS ON DIFFERENT GCR VARIATIONS

Plane

Max-Max

Max-Sum

Sum-Max

Sum-Sum

FCAM

Sum
R. Average

0.8457 £ 0.0152
0.7219 £ 0.0505

0.8476 + 0.0159
0.7200 £ 0.0424

0.8343 £ 0.0166
0.7486 + 0.0656

0.8476 + 0.0159
0.7619 £ 0.0532

CRCAM

Sum
R. Average

0.7943 + 0.0777
0.7695 + 0.0378

0.7905 £ 0.0752
0.7410 £+ 0.0729

0.7695 £ 0.0809
0.7505 £ 0.0947

0.7676 + 0.0827
0.7486 £ 0.0954

GTM

Max of sum
Max of r. average
Average of sum
Average of r. average
Median of sum
Median of r. average

AVERAGE ACCURACIES OVER ALL 5 BINS OF OUR MODEL WITH ORIGINAL

TABLE III

0.8171 £+ 0.0690
0.8190 + 0.0346
0.8000 £+ 0.0792
0.7829 £ 0.1341
0.7733 £ 0.0777
0.8019 + 0.0353

AND WITH SYMBOLIFIED INPUT.

Dataset Base Acc. SAX Ace.
ECG Val. 0.9540 4+ 0.0102 | 0.9440 + 0.0185
ECG Test 0.9364 4+ 0.0030 | 0.9316 + 0.0038
Synth Val. | 0.9700 £ 0.0306 | 0.9567 4 0.0270
Synth Test | 0.9573 + 0.0077 | 0.9394 + 0.0056
Plane Val. | 0.9714 £ 0.0233 | 0.9810 + 0.0233
Plane Test | 0.9619 £ 0.0120 | 0.9771 4 0.0047
Power Val. | 0.6722 £ 0.1442 | 0.9667 + 0.0324
Power Test | 0.6567 4+ 0.1320 | 0.9478 £ 0.0134

obtained across all 5 folds. Each coherence matrix was eval-
uated on all fold-models. It is important to note, that we only 4)
used a standard state-of-the-art Transformer model (described
in Section III-B) which performed quite well on all given
datasets, rather than optimizing it for all given classification
tasks. With this, we aim to make the results more comparable

0.8019 £ 0.0456
0.7848 £+ 0.0354
0.7905 + 0.0752
0.7695 + 0.1277
0.7714 £ 0.0745
0.7867 £ 0.0411

0.8038 £+ 0.0714
0.7733 + 0.0279
0.7714 £+ 0.0797
0.7410 £ 0.1165
0.7543 £+ 0.0690
0.8019 =+ 0.0647

0.7924 £+ 0.0729
0.7333 £+ 0.0921
0.7657 + 0.0829
0.7505 £ 0.1208
0.7714 £+ 0.0745
0.7676 + 0.0461

different data trends. The train and test data both contain
300 samples; each sequence has a length of 60 and each
class occurrence is balanced.

2) The second one (ECG) is an ECG5000 dataset [29], [30],
which contains preprocessed ECG samples for 5 classes
of length 140. The class distribution is unbalanced and
the training size is 500, while the test data amounts to
4500 samples. This makes this dataset quite challenging,
especially for the more infrequent classes.

3) For the third dataset (Plane), we chose a plane outline

dataset [29] with 7 classes and a sequence length of

144. The test and train size is 105; class occurrences are

balanced.

For the fourth dataset (Power), a balanced 2 class Power

Consumption dataset [29] is taken which has 180 train

and test samples of length 144. It differentiates between

the power consumption of a household in warm and cold
months.

at a general task-level, in order to inhibit over-optimization
influences due to different model parameters.

A. Datasets

For evaluating our presented approach, we applied four
datasets. Each univariate dataset has a quite small sequence
length — due to the memory complexity of the Transformer.

1) The first one (Synth) is the Synthetic Control Chart time

series [28], [29], which contains synthetic data for 6

B. Base Accuracies

Table III shows the validation and test results on all four
datasets for the original data and symbolized data. Each
model’s performances was above 93% which can be observed
as quite good without special fine tuning. One exception are
the base accuracies on the Power dataset, but because we
only focus our analysis on the symbolic data and on the
comparability between them, this is acceptable in this context.



SYNTHETIC CONTROL DATASET (SYNTH): ABSTRACTION ACCURACIES RESULTS ON DIFFERENT GCR VARIATIONS

Synth

Max-Max

TABLE IV

Max-Sum

Sum-Max

Sum-Sum

FCAM

Sum
R. Average

0.7293 £+ 0.0301
0.8267 + 0.0284

0.7253 £+ 0.0448
0.8660 + 0.0217

0.7087 £ 0.0445
0.8213 £ 0.0486

0.6987 £ 0.0492
0.8533 4 0.0313

CRCAM

Sum
R. Average

0.6427 + 0.0747
0.8713 £+ 0.0352

0.6167 £+ 0.0822
0.8813 + 0.0340

0.5433 £+ 0.1052
0.8367 + 0.0781

0.5127 £ 0.0967
0.8353 £ 0.080

GTM

Max of sum
Max of r. average
Average of sum
Average of r. average
Median of sum
Median of r. average

0.6827 £+ 0.0168
0.7560 £ 0.0486
0.6413 £+ 0.0742
0.8560 + 0.0360
0.6340 £+ 0.0667
0.8147 £+ 0.0510

0.6813 £ 0.0396
0.8547 £+ 0.0335
0.6147 £+ 0.0837
0.8560 + 0.0402
0.6160 £+ 0.0783
0.8533 £ 0.0402

TABLE V

0.6567 + 0.0508
0.8307 £ 0.0585
0.5427 + 0.1144
0.8300 + 0.0764
0.5333 £+ 0.1101
0.774 £+ 0.0875

0.6140 £ 0.0879
0.9080 + 0.0247
0.5140 £+ 0.1133
0.8253 £ 0.0542
0.5033 £ 0.1099
0.8007 £ 0.0837

ECG DATASET: ABSTRACTION ACCURACIES RESULTS ON DIFFERENT GCR VARIATIONS

ECG

Max-Max

Max-Sum

Sum-Max

Sum-Sum

FCAM

Sum
R. Average

0.7976 £ 0.0416
0.8627 £+ 0.0223

0.7108 £ 0.1110
0.8807 + 0.0086

0.5813 + 0.2117
0.8715 + 0.0172

0.5606 £+ 0.2173
0.8688 + 0.0264

CRCAM

Sum
R. Average

0.4696 £+ 0.2186
0.8400 + 0.0452

0.4223 £+ 0.1628
0.8418 + 0.0413

0.3542 + 0.0914
0.8315 + 0.0440

0.3047 £ 0.0401
0.8264 + 0.0473

GTM

Max of sum
Max of r. average
Average of sum
Average of r. average
Median of sum
Median of r. average

0.4962 £+ 0.2467
0.8788 £+ 0.0122
0.4620 £+ 0.2109
0.8622 £+ 0.0297
0.4600 + 0.2092
0.8568 + 0.0334

0.4749 £+ 0.2262
0.8779 + 0.0109
0.4138 £+ 0.1532
0.8736 + 0.0201
0.4114 £ 0.1504
0.8706 + 0.0177

0.4669 + 0.2167
0.8764 + 0.0157
0.3339 £+ 0.0711
0.8777 £ 0.0174
0.3240 £ 0.0687
0.8763 + 0.0174

0.4170 &+ 0.1575
0.8745 £+ 0.0168
0.3009 £ 0.0372
0.8800 + 0.0161
0.2976 + 0.0329
0.8790 £ 0.0140

C. Coherence Matrices Evaluation

In this section, we show the results from all 10 x 4 GCR
variants — described in Section III-C and III-D — for each
dataset from Section IV-A. Comparing the scores of all GCRs,
we observe that we can achieve quite good results with up to
92.44% for the Power dataset, while only using the reformatted
attention matrices. Therefore, we can use the visualizations
with the highest accuracy to somewhat determine the most
important positions for the given classification task (at least in
the boundaries determined by the evaluation accuracy of the
selected representation). The Plane dataset performed worst
with up to 84.76% even though it had the highest SAX
accuracy. Additionally, it is interesting to see that the best
combination approach is depending on the dataset. While the
Max-Sum LAAM method performed best most of the time
— but not always and with mostly rather small differences
(row vise) — the GSWA and GVA selection (columns vise)
had a huge impact on the final results. Overall the relative
average (GSWA) performed best — for the Synth, ECG and
quite good on the Plane dataset; however, the Power dataset
shows that this is not always the case. Further, the Plane
dataset performed quite well on both GSWA methods. When
comparing the results of the GTM/GVA variants, we observe
even more differences for the best combination method. We
would argue this is due to some form of individuality of
attention, where attention acts as some sort of preprocessing

but still needs a solution on how to interpret the processed
data. This could also be further underlined by the findings
and hypotheses of [4], [8], [11], [21].

The performance loss between the SAX and the GCR
accuracy was highest for the Plane dataset (with 13%) and
the lowest for the PowerCon dataset (with 2.3%). This also
indicates that attention is not interpretable per se but can
be, if processed correctly. Each GCR type (FCAM, CRCAM,
GTM) obtained at least an accuracy of 79% (using the best
aggregation); this varied between datasets, showing that also
choosing the right visualization and matrix combination can
be crucial for interpretation and classification. Additionally,
some combination methods had a higher variance due to strong
outliers, which also shows the influence of the initial training
data and the need to find a stable combination method.

D. Low Accuracy Models — Weak Model Boosting

To show that due to the coherence abilities of the MHA
quite a lot of classification information is present early, we
trained each dataset for 15 epochs and with warm-up, resulting
in the poor accuracies shown in Table VII; here, we applied
our coherence representation evaluation on the new models.

Table VI shows the accuracy results for the poorly trained
models for the Max-Sum LAAM — because it performed
on the good models overall the best. When the results are
compared to the ones in the Tables I-V, we observe that our
process still performs quite good, while the baseline model is



GCR ACCURACIES WITH Max-Sum LAAM FOR EACH DATASET, WHEN USING THE POOR ACCURACY MODELS.

Weak Models

Power

TABLE VI

Plane

Synth

ECG

FCAM

Sum
R. Average

0.7933 £+ 0.0163
0.8822 4 0.0491

0.8210 £ 0.0291
0.7810 £ 0.0413

0.5440 £+ 0.0259
0.7947 £+ 0.0069

0.4796 £+ 0.1833
0.8722 + 0.0396

CRCAM

Sum
R. Average

0.8578 £ 0.0174
0.8578 4+ 0.0114

0.7562 £+ 0.0722
0.7867 £+ 0.1170

0.2067 £ 0.0110
0.6260 £ 0.0628

0.2879 £+ 0.0168
0.7785 + 0.0590

GTM

Max of sum

0.8611 £+ 0.0183
0.8567 £ 0.0200

0.7581 £+ 0.0717
0.7219 £ 0.0983

0.2107 £ 0.0106
0.2533 £+ 0.0187

0.2882 £+ 0.0167
0.8754 + 0.0201

Max of r. average
Average of sum
Average of r. average
Median of sum
Median of r. average

0.8578 £ 0.0174
0.7889 £ 0.0176
0.8578 £+ 0.0174
0.8344 £ 0.0330

TABLE VII
AVERAGE ACCURACIES OF ALL 5 BINS OF OUR MODEL WITH ORIGINAL
AND WITH SYMBOLIFIED INPUT, BUT ONLY WITH WARM-UP AND 15

0.7562 £ 0.0722
0.7695 £ 0.1167
0.7543 £ 0.0685
0.7714 £ 0.0276

TRAINING EPOCHS.

Dataset Base Acc. SAX Ace.
ECG Val. 0.6280 4+ 0.0911 | 0.5840 + 0.0049
ECG Test 0.6345 4+ 0.1015 | 0.5819 + 0.0036
Synth Val. | 0.1833 £ 0.0615 | 0.1927 4+ 0.0456
Synth Test | 0.1667 £ 0.0000 | 0.1667 £ 0.0000
Plane Val. | 0.1714 4+ 0.0774 | 0.1295 + 0.0794
Plane Test | 0.1429 + 0.0522 | 0.1486 4+ 0.0344
Power Val. | 0.5000 £ 0.0000 | 0.5056 4 0.0086
Power Test | 0.5444 4 0.1033 | 0.4967 + 0.1002

doing a bad job. Some aggregations on the weak models even
performed better than for the good models, with sometimes
even an extreme behavior e. g., the Power dataset where the
relative average GSWA performs on par or even better than
the sum. But the best GCR accuracy was still always obtained
using the good models. This shows that MHA can quite well
and early highlight important key features, but we still need
to interpret them correctly. When comparing these results
to Section IV-C, this further strengthens the hypothesis that
the attention weights increase the important coherence points
for classification — as some sort of general preprocessing
mechanism facilitating interpretability on our representations.

E. Discussion

Our results demonstrate the strong performance of our
GCRs and aggregation methods (see Section IV-C) and the
ability of the GCRs to highlight important patterns even on
weak models (see Section IV-D). It is important that while
attention is a general highlighting mechanism regardless of
the class — as already argued by [4], [8], [22] — we showed
in this work that attention can be interpreted to further enhance
common elements per class. [21] showed how attention heads
can be pruned; we follow up with an even bigger reduction in
attention but show that key elements can still be preserved.

1) Coherence Representations: Figures 3-9 show multiple
global class representations — which we call GCRs — with
different levels of detail where we argue and demonstrated via
example patterns that the general class shape can be interpreted

0.2060 £+ 0.0112
0.4780 £ 0.0526
0.2060 £ 0.0112
0.6820 £ 0.0474

0.2876 £+ 0.0171
0.8732 + 0.0171
0.2878 £+ 0.0169
0.8596 + 0.0236

quite well. We further supported this by showing an evaluation
technique which can even be used for classification. Because
the evaluation method is completely transparent, we can com-
prehend how the attention values need to be handled, thus
showing which data points the model perceives as important
for the given task in relation to how good the GCR performs
in the evaluation. Based on the same principle as [13], [14],
but based on a more compact formalization, we argue that we
can thus support the finding of unwanted biases in the trained
representation, in a more compact representation. For example,
Figure 9 shows a rather weak attention for the value 1 between
two higher attention sequences. This could indicate that not
enough or no training data covers this space, which could be
unwanted and would correspondingly be a first approach to
optimize the model. While the different levels of detail from
the GCRs did not vary a lot in performance (comparing the
best aggregations), they can provide a trade off between details
(e. g., for debugging) and a more intuitive presentation.

When looking at our results in the Tables I-V, we observe
that it is possible to quite simply construct an aggregation of
all attention matrices which have a nice visualization and can
even help with the interpretation of the underlying Transformer
model. One emerged interesting property of attention which
can be quite easily seen in the Tables I-V is that attention
seems to have some form of individuality. This would make
sense, because each problem needs its own solution.

2) Global Coherence Representation Validation: Even
though the combination needs to be somewhat individual,
we further have shown that using our approach quite good
results can be extracted also using only poorly trained and
thus initially weak models. We argue therefore, that this is due
to the coherence ability of the MHA which already emerges
after the warm up step and thus highlights interesting patterns
which can already provide a quite good global class overview
as shown in Table VI. This could be due to a general problem
dividing property of MHA, where [31] even showed that with
not much retraining, new problems can be learned. Other
work further solidifies this assumption. We combine therefore
multiple works; that with the pattern saving and retrieving
ability of MHA [11] and its noise reduction functionality [8],
[22], it can act as some form of preprocessing to separate data



and has the ability to highlight interesting pattern in all classes
[4], [8], [11]. In other words, the MHA simplifies the problem
for the dense layers and thus the dense layer represents an
approximated interpretation method. Accordingly, w.r.t. our
findings we suspect that a dynamic attention process can be
found to interpret attention. Further, we hypothesize that a
successful combination can somewhat be used to bootstrap the
initial weights of all followup layer for faster learning success.
Last but not least we would suspect, that it should be possible
to further improve the coherence representations by extracting
weights from the Transformer model into it. These hypothesis
are to be investigated in future work.

V. CONCLUSIONS

In this paper, we presented an approach to make Multi-
Headed Attention more interpretable and explainable for time
series classification. Our proposed method aims at constructing
a GCR from Multi-Headed Attention of Transformer archi-
tectures, for classification of time series data. Accordingly,
we present abstraction and interpretation methods, leading to
intuitive visualizations of the respective attention patterns. We
evaluated our proposed approach and the presented methods on
four time series datasets. Our results demonstrate the impact
and efficacy of the proposed approach for constructing GCRs
to identify interpretability and coherences of the Transformer
attention. The GCRs show convincing results, in particular also
for weak models, where their performance could be signifi-
cantly improved applying the proposed approach. Additionally
we discussed and emphasized the individuality of attention
indicated by the different aggregation strategies.

For future work, we aim to apply the proposed approach
on further datasets — extending towards multivariate time
series, scalability, identity concerns [27] and further XAI mea-
surements [5]. In addition, here the construction of according
enhanced combination strategies becomes important, which is
another area to consider for future work.
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APPENDIX A
ADDITIONAL GTM VISUALIZATIONS

To show some further examples of our visualizations, we
present the GTM for all classes from all datasets which
performed overall the best — here, always the last fold
is visualized. Figure 10 shows all six trend classes of the
Synthetic dataset. The Power dataset (2 classes) is visualized
in Figure 11. Next, Figure 12 visualizes all 7 plane shapes
from the Planes dataset. Last but not least, Figure 13 shows 4
of the 6 classes from the ECG dataset. For class 5 and 6, no
training sample was present in the given fold, which shows
how unbalanced some class occurrences for this dataset were.
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Fig. 10. Global Trend Matrix for all classes of the Synthetic dataset with
Sum-Sum LAAM and maximum GVA of the relative average GSWA.
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Fig. 11. Global Trend Matrix for all classes of the Power dataset with Max-
Sum LAAM and maximum GVA of the sum GSWA.
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Fig. 12. Global Trend Matrix for all classes of the Plane dataset with Max-
Max LAAM and maximum GVA of the relative average GSWA.
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Fig. 13. Global Trend Matrix for all classes of the ECG dataset with Sum-Sum
LAAM and average GVA of the relative average GSWA.

APPENDIX B
REPRODUCIBILITY

Our model is provided in a git repository?. Figure 2 provides
a simple overview of our model, but to further enhance
reproducibility we provide the following textual summary:
We used sklearn.preprocessing.StandardScaler to standardize
the data, which is fitted on the training data. Afterwards we
applied pyts.approximation.SymbolicAggregateApproximation
with 5 bins and the uniform strategy to symbolize the data. The
symbols are mapped to the interval [-1,1] with equal distances.
The processed data is now trained with a Transformer encoder
model where tensorflow_addons.layers.MultiHeadAttention is
used for the MHA. The Transformer encoder has 2 attention
layers, a d_model of 16, 6 heads and a head size of 6 with
a dropout of 0.3. We applied a positional encoding but used

2Source/code for reproducibility is available under:
https://github.com/cslab-hub/Global TimeSeriesCoherenceMatrices



# attentions is a matrix with the shape (train_size, where:
# train_size is the number of training samples

# layers the number of layers in the model

# heads the number of heads in the model

# input_size the length of a training sample

# predicting the attention and labels for the train data with the trained model

prediction, attentions = model.predict (train_data)

layers, heads, input_size, input_size),

# Create Max-Sum LAAM

# aggregate heads with max (as in max from the numpy package)

reduced_heads = max (attentions, axis=2)

# aggregate layers with sum (as in sum from the numpy package) to receive the LAAM
reduced_attentions = sum(reduced_heads, axis=1)

for train_index in train_data:
original_time_series = train_data[train_index]
attention_matrix = reduced_attentions[train_index]

initEmptyFCAM() initializes the following dict/array structure with zeros to do r. average GSWA

attention _count represents how often one specific position in all attention matrices was present in train data.

r_average_FCAM represents the relative average attention for each class for each possible symbol pair

labels is the number classes of the classification task

#

#

#

# Both are in shape (labels, symbols, symbols, input_size, input_size) where:
#

# symbols is the number of abstracted symbols

#

r_average_CRCAM represents the column reduced r_average FCAM with shape (labels, symbols, input_size, input_size)
attention_count, r_average_FCAM, r_average_CRCAM = initEmptyFCAM ()
for i in range(input_size):
for j in range (input_size):
#count all non-zero attentions
if attention_matrix[i][j] != O:
#train_labels are the corresponding labels for the train input
attention_count [train_labels] [original_time_series[i]] [original_time_series[j1][1i][]] += 1
#summing up the attention score for each position
r_average_FCAM[train_labels] [original_time_series[i]] [original_time_series([J]]1[1i][]j] += attention_matrix[i][]]

#iterate over all elements to calculate the relative average GSWA

for label in r_average_FCAM.keys () :
for to_symbol in r_average_FCAM[lable].keys () :
for from_symbol in r_average_FCAM[lable].keys():
for i in range (input_size):
for j in range (input_size):

current_count = attention_count[label] [from_symbol] [to_symbol] [1][]]

current_attention_value =

# calculate the GTM with the maximum,
# (max,

r_average_average_GTM =

r_average_FCAM[label] [from_symbol] [to_symbol] [1] []]
r_average_FCAM[label] [from_symbol] [to_symbol] [i][]] =
r_average_CRCAM[label] [to_symbol] [1] []]

current_attention_value/current_count
+= r_average_FCAM[label] [from_symbol] [to_symbol] [i][]]

average and median GVA
median and average are implemented as their counterparts in numpy)
r_average_maximum_GTM = max (r_average_CRCAM[label] [to_symbol],
average (r_average_CRCAM[label] [to_symbol],
r_average_median_GTM = median (r_average_CRCAM[label] [to_symbol],

axis=0)
axis=0)
axis=0)

Fig. 14. Pseudo Python code: How to calculate the FCAM and CRCAM for different strategies; here, for the relative average and Max-Sum combination and

all of the three proposed corresponding GTM variations.

no additional embedding. After processing via the encoder,
we flattened the output, applied a 0.3 dropout and used a
fully connected neural network layer with a sigmoid function
to obtain the output classes. The number of outputs is equal
to the number of classes of the trained dataset. As an error
function we applied the mean squared error. We used 10000
warm-up steps and the standard Adam optimizer. Our batch
size was 50, we had at most 500 epochs combined with early
stopping where patience was 70 and the minimal delta 0. We
selected the best model with the highest validation accuracy
and smallest validation loss as the final model. To construct the
coherence visualizations, we used the combinations described
in Section III-C and Section III-D in detail.

To summarize how to compute the LAAM, GSWA und GVA
we provide — besides our original implementation, pseudo

code in Figure 14. Here, we show how to construct the FCAM,
CRCAM representations — with the relative average and Max-
Sum combination and all 3 corresponding GTM variations.

For calculation we used Python version 3.7.3, a 1080 ti and 32
GB RAM, with the following packages (with those versions):
1) tensorflow==2.2.0
2) tensorflow_addons==0.11.2
3) tensorflow_probability==0.7.0
4) seaborn==0.10.1
5) scipy==1.4.1
6) scikit-learn==0.23.2
7) pyts==0.11.0
8) pandas==1.0.0
9) numpy==1.18.5
10) matplotlib==3.3.1



