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Université Paris 13,
Villetaneuse, France, and

ISYEB UMR 7205, Museum
National d’Histoire

Naturelle Paris, France
henry.soldano@mnhn.fr

Guillaume Santini,
Dominique Bouthinon
LIPN UMR-CNRS 7030

Université Paris 13,
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Abstract—Local pattern mining on attributed graphs is an
important and interesting research area combining ideas from
network analysis and graph mining. In this paper, we present
MinerLSD, a method for efficient local pattern mining on at-
tributed graphs. In order to prevent the typical pattern explosion
in pattern mining, we employ closed patterns for focusing pattern
exploration. In addition, we exploit efficient techniques for prun-
ing the pattern space: We adapt a local variant of the Modularity
metric with optimistic estimates, and include graph abstractions.
Our experiments on several standard datasets demonstrate the
efficacy of our proposed novel method MinerLSD as an efficient
method for local pattern mining on attributed graphs.

Index Terms—complex networks, mining attributed graphs,
closed pattern mining, community detection

I. INTRODUCTION

The analysis of complex networks is an important task
for investigating structural properties, identifying interesting
patterns, and ultimately enabling an understanding of phe-
nomena and structures on those networks in various contexts,
e. g., [1]–[16]. In this context, data mining on such networks
represented as attributed graphs has emerged as a prominent
research topic recently, e. g., [5], [8], [10], [13]–[17]. Methods
for mining attributed graphs focus on the identification and
extraction of patterns using topological information as well as
compositional information on nodes and/or edges given by a
set of attributes, e. g., [18], [19].

Local pattern mining is an important approach for identi-
fying communities, e. g., [5], [9], [10], [13], [14], [17], [20],
focusing on the identification of dense substructures in a graph
that are captured by specific patterns composed of the given
attributes. In this context, different interestingness measures
for identifying communities have been utilized, ranging from
simple graph measures like focusing on cliques and quasi-
cliques to more elaborate community quality indices like the
Modularity measure introduced by Newman [21], [22], for
which also variants focusing on local modularity structures
have been introduced [14]. The latter then directly connects
to local pattern mining approaches.

In this paper, we present MinerLSD a method for efficient
local pattern mining on attributed graphs, focusing both on (lo-

cal) community detection using the Modularity metric, as well
as graph abstraction that reduces graphs to k-core subgraphs
[13]. In order to prevent the typical pattern explosion in pattern
mining, we employ closed patterns for focusing the pattern
exploration both for the structural as well as the compositional
perspective. In addition, we exploit optimistic estimates for the
local modularity for pruning the pattern space. Essentially, the
optimistic estimate technique provides two advantages: First, it
enables a very efficient pattern exploration approach. Second,
it neglects the importance of a minimal support threshold
which is typically applied in pattern mining. As we will show
below, given a suitable threshold for the local modularity,
efficient pattern mining is enabled. Then, this threshold can of
course alternatively be entirely eliminated in a top-k approach.

We perform experiments on several standard datasets, using
two baselines for local pattern mining, in relation to our
proposed novel pattern mining approach. We demonstrate on
various datasets the efficacy of our presented novel method
MinerLSD for local pattern mining on attributed graphs.

Our contributions are summarized as follows:

1) For local pattern mining on attributed graphs, we analyze
the impact of generating closed patterns compared to
standard pattern mining in terms of the search effort.

2) Using two base algorithms, we further investigate the
impact of pruning the pattern exploration space using an
optimistic estimate of the local modularity measure with
different thresholds.

3) Finally, we propose the MinerLSD method for efficient
local pattern mining on attributed graphs. MinerLSD re-
lies on closed pattern mining, optimistic estimate pruning,
and graph abstraction.

The rest of this paper is organized as follows: Section II
discusses related work. Then, Section III presents the consid-
ered methods including the novel MinerLSD method. Next,
Section IV introduces the applied datasets. Sections V-VI dis-
cuss our experimental results. Finally, Section VII concludes
with a summary and interesting directions for future work.
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II. RELATED WORK

The detection of local patterns is a prominent approach in
knowledge discovery and data mining, e. g., [23]–[25]. Below,
we specifically discuss related work in the areas of local
pattern mining and community detection on attributed graphs.

A. Local Pattern Mining

In general, local pattern mining, e. g., [23]–[30] has many
flavors, including association rule mining, subgroup discovery,
and graph mining. At its core, it considers the support set of
any pattern, i. e., the set of objects, often called transactions,
in which the pattern occurs. The goal then is to enumerate
the set of all patterns that satisfy some constraint. Whenever
the constraint is anti-monotonic, as the frequency, a top-down
search may be efficiently pruned. Still this results in investigat-
ing a lot of patterns. Closed Pattern Mining (see for instance
[31]) reduces the search by considering patterns as equivalent
when having the same support set, and generating only closed
patterns i.e. a most specific pattern among all equivalent
patterns. Efficient enumeration algorithms have been provided,
e. g., [32], [33]). Various algorithms and methodologies using
closure operators have also been proposed in the domain of
Formal Concept Analysis [34], which goes further than the
enumeration alone, being interested in the lattice structure of
the set of closed patterns [35].

For investigating complex networks, a popular approach
consists of extracting a core subgraph from the network,
i. e., some essential part of the graph whose nodes satisfy
a local property. The k-core definition was first proposed
in [36]. It requires all nodes in the core subgraph to have
a degree of at least k. The idea was further extended to a
wide class of so-called generalized cores [37]. The resulting
subgraphs may be made of several connected components that
are then considered as structural communities. However, as
this may be too weak to obtain cohesive communities, some
post-processing may then be necessary. A successful method
consists, for example, in extracting k-communities [38] that
are extracted from the connected components of a graph
derived from the original graph.

Combining both ideas, recently an extension of the closed
pattern mining methodology to attributed graphs has been
proposed. It relies on the reduction of the support set X of
a pattern to the core of the pattern subgraph G

X

[39]. This
results in less and larger classes of equivalent patterns, and
hence less closed pattern. MinerLC is a generic method to
enumerate the set of such core closed patterns [40].

Similar to the approaches discussed above, the proposed
MinerLSD approach also utilizes closed patterns, and graph
abstractions, i. e., core subgraphs, relying on the MinerLC
method as a foundation. However, it extends this using op-
timistic estimate pruning using an interestingness measure for
(local) community detection, as described in the next section.
We perform an extensive evaluation of the impact of closed
patterns, optimistic estimate, and core structures on the effort
for mining attributed graphs.

B. Community Detection on Attributed Graphs

Community detection on attributed graphs connects pattern
mining and community detection according to several interest-
ingness measures or optimization criteria. Moser et al. [17],
for example, combine the concepts of dense subgraphs and
subspace clusters for mining cohesive patterns. Starting with
quasi-cliques, those are expanded until constraints regarding
the description or the graph structure are violated. Similarly,
Günnemann et al. [41] combine subspace clustering and dense
subgraph mining, also interleaving quasi-clique and subspace
construction, e. g., focusing on the densities of quasi-cliques
concerning the graph structure.

Galbrun et al. [10] propose an approach for the problem
of finding overlapping communities in graphs and social
networks, that aims to detect the top-k communities so that the
total edge density over all k communities is maximized. This
is also related to a maximum coverage problem for the whole
graph. For labeled graphs each community is required to be
described by a set of labels. The algorithmic variants proposed
by Galbrun et al. apply a greedy strategy for detecting dense
subgroups, and restrict the resulting set of communities, such
that each edge can belong to at most one community. This
partitioning involves a global approach on the community
quality, in contrast to our local approach.

Silva et al. [5] study the correlation between attribute sets
and the occurrence of dense subgraphs in large attributed
graphs. The proposed method considers frequent attribute sets
using an adapted frequent item mining technique, and identi-
fies the top-k dense subgraphs induced by a particular attribute
set, called structural correlation patterns. The DCM method
presented by Pool et al. [9] includes a two-step process of
community detection and community description. A heuristic
approach is applied for discovering the top-k communities.
Pool et al. utilize a special interestingness function which is
based on counting outgoing edges of a community similar; for
that, they also demonstrate the trend of a correlation with the
modularity function.

The COMODO algorithm proposed by Atzmueller et
al. [14], [42] applies an adapted subgroup discovery [30], [43],
[44] approach for community detection on attributed graphs.
The algorithm works on an edge dataset that is attributed with
common attributes of the respective nodes. Then, communities
are detected in a top-k approach maximizing a given commu-
nity interestingness measure. This includes, among others, the
local Modularity, which is derived from the (global) measure,
i. e., the (Newman) Modularity [21], [22]. For an efficient
community detection approach, COMODO utilizes optimistic
estimate pruning.

In this paper, we adapt the COMODO approach integrat-
ing optimistic estimate pruning for the local Modularity as
proposed by COMODO with closed pattern mining resulting
in the MinerLSD algorithm. The result is a combination of ef-
ficient closed pattern mining with different selection strategies
according to local Modularity and graph abstractions, as we
will show below.



III. TWO ATTRIBUTED NETWORK PATTERN MINING
METHODS

We consider the following general problem: Let G be an
attributed graph, i. e., a graph where each vertex v is described
by an itemset D(v) taken from a set of items I . We want
to enumerate all (maximal) vertex subsets W in G such that
there exists an itemset q which is a subset of all itemsets
D(v), v 2W . W is furthermore required to satisfy some graph
related constraints. In the standard terminology, q is a pattern
that occurs in all element of W which is also called the support
set or extension ext(q) of q. Efficient top-down enumeration
algorithms exist as far as the constraints are anti-monotonic:
whenever the constraint fails to be satisfied by some pattern,
it also fails for all more specific patterns. This is obviously
the case of the minimum support constraint that requires the
size of ext(q) to be above some min sup threshold s.

A first way to reduce the overall search space and the size
of the solution set is to avoid duplicates, i. e., patterns q, q

0

that occur in the same subgroup, for which ext(q) = ext(q0).
This is obtained by only enumerating closed patterns. Given
any pattern q the associated closed pattern is the most specific
pattern f(q) which occurs in the same subgroup as q, i. e.,
ext(f(q)) = ext(q). Furthermore, since we consider as objects
the vertices of a graph, it is natural to consider graph related
constraints, as for instance requiring that all vertices have a
degree of at least k in the subgroup graph G

W

. For that
purpose, each candidate subgroup X is reduced to its core
p(X) = W using the core operator p. MinerLC, described
below, uses both closed pattern mining and core operators to
reduced the solution set.

Another way to reduce the solution set is to consider some
interestingness measure m and require a subgroup W to induce
a subgraph G

W

with interestingness m(W ) above some
threshold l. However such measures, for example, the local
modularity, are usually not anti-monotonic. This difficulty may
be overcome by using some optimistic estimate of m which is
both anti-monotonic and allows an efficient pruning of the
search space. This is the basis of COMODO, the second
method described hereunder.

A. Mining Closed Patterns to Enumerate Core Subgraphs
MinerLC enumerates pairs (c,W ) where G

W

is the core
subgraph of pattern c i. e., W = p � ext(c) where � is the
composition operator, p is a core operator and c is the largest
pattern that occurs in W and is called a core closed pattern.
A threshold on the core sizes allows to select frequent such
core closed patterns and to accordingly prune the search.
The selection process relies then partly on the anti-monotonic
support constraint and partly on the fact that there are less
pattern core subgraphs than pattern subgraphs as various
pattern subgraphs G

ext(q)

may be reduced to the same core
subgraph.

Core closed pattern mining: The operator f that returns for
any pattern q the closed pattern f(q) is a closure operator
(see below) defined by f(q) = int � p � ext(q), for which the
operators are defined as follows:

• The intersection operator int(X) returns the most specific
pattern occurring in the vertex subset X .

• The core operator p(X) returns the core, according to
some core definition, of the subgraph G

X

of G induced
by the vertex subset X . p is an interior operator (see
below).

Definition 1: Let S be an ordered set and f : S ! S a self
map such that for any x, y 2 S, f is monotone, i.e. x  y

implies f(x)  f(y) and idempotent, i.e. f(f(x)) = f(x):
- If f(x) � x, f is called a closure operator
- If f(x)  x, f is called an interior operator.
Essentially, core closed pattern mining relies on three main

results: (1) It has been shown that whenever p is an interior
operator, f = int � p � ext is a closure operator [45].
(2) Furthermore, core definitions rely on a monotone property
of a vertex within an induced subgraph [46]. For instance, the
k-core of a subgraph G

X

is defined as the largest vertex subset
W ✓ X such that in the induced subgraph G

W

all vertices v

have a degree of at least k. The property is monotone in the
sense that when increasing G

X

to G

X

0 the degree of v cannot
decrease. (3) Finally, it has been shown that the core operator
which returns the core of some subgraph G

X

, according to a
monotone property, is an interior operator. Overall, this means
that f(q) returns the largest pattern which occurs in the core
of the vertex subset ext(q) in which q occurs. This is exploited
in MinerLC [40]: it performs a top-down search of the pattern
space jumping from closed pattern to closed pattern: each
closed pattern q is augmented with some item x, then the
next closed pattern f(q [ {x}) is computed. An algorithmic
description following this scheme is given in Section VI-A,
where we present the novel MinerLSD algorithm.

B. Pruning Subgroup Discovery Using Optimistic Estimates

The COMODO algorithm1 presented in [14] focuses on
description-oriented community detection for discovering the
top-k communities. Essentially, COMODO is based on an
adapted subgroup discovery approach [42], [48], and also
tackles typical problems that are not addressed by standard
approaches for community detection such as pathological
cases like small community sizes. COMODO utilizes opti-
mistic estimates [44], [49], which are efficient to compute,
in order to prune the search space significantly. For that, a
number of standard community evaluation functions have been
applied using optimistic estimates for an efficient approach. In
summary, COMODO enumerate pairs (c,W ) where G

W

is
the subgraph of pattern c. It selects top k subgraphs according
to an interestingness measure m of the subgraph and uses an
anti-monotonic optimistic estimate of m to prune the search.
Additionally, a minimal support constraint can also be applied
in order to improve the effectiveness of pruning.

One particular quality function is the Modularity [21], [22].
In the following, we summarize the main features of optimistic
estimate pruning for graph structure interestingness measures

1http://www.vikamine.org [47]



in the context of community detection. When introducing
these, we adopt the notation of [14] for the main concepts.

Overall, the concept of a community intuitively describes a
group W of individuals out of a population such that members
of W are strongly “connected” to each other but sparsely
“connected” to those individuals that are not contained in W .
This notion translates to communities as vertex sets W ✓ V

of an undirected graph G = (V,E), for which we use the
following notation:

• n := |V |, m := |E|,
• m

W

:= | {{u, v} 2 E : u, v 2W} | – the number of
intra-edges of W , and

• m̄

W

:= | {{u, v} 2 E : | {u, v} \W | = 1} |, resulting
in the number of inter-edges of W .

There are different interestingness measures for estimating
the quality of a community 2V ! R, also according to
different criteria and intuitions about what “makes up” a good
community. In the context of local pattern mining, we aim to
maximize local quality functions for single communities. For
that, we apply an adaptation of the Modularity interestingness
measure, which essentially is a global measure estimating the
quality of a community partitioning. Then, we focus on the
modularity contribution of each individual community in order
to obtain a local measure for each community, cf., [14].

Overall, the Modularity MOD [21], [22], [50] of a graph
clustering with k communities C

1

, . . . , C

k

✓ V focuses on
the number of edges within a community and compares that
with the expected such number given a null-model (i. e., a
corresponding random graph where the node degrees of G are
preserved). It is given by

MOD =
1

2m

X

u,v2V

✓
A

u,v

� d(u) d(v)

2m

◆
�(C(u), C(v)) ,

(1)
where C(i) denotes for i 2 V the community to which node
i belongs. A

u,v

denotes the respective entry of the adjacency
matrix A. �(C(u), C(v)) is the Kronecker delta symbol that
equals 1 if C(u) = C(v), and 0 otherwise.

The modularity contribution of a single community given by
a vertex set W,W ✓ V in a local context (e. g., in a subgraph
induced by a pattern) can then be computed (cf., [14], [50],
[51]) as follows:

MODL(W ) =
m

W

m

�
X

u,v2W

d(u) d(v)

4m2

.

For the above, an optimistic estimate for the local modular-
ity contribution has been introduced in [14]. It can be derived
based only on the number of edges m

W

within the community:

oe(MODL(C)) =

(
0.25, if m

W

� m

2

,

mW
m

� m

2
W

m

2 , otherwise.

For a detailed discussion, the derivation of the local measure,
and the respective proofs, we refer to [14].

C. Similarities and Differences in Selected Patterns

Both the considered methods, i. e., MinerLC and
COMODO output a set of pairs (pattern, vertex subset).
However, in order to compare their outputs we have to
consider the following differences:

• In COMODO the vertex subset W is obtained as the
extremities of the set of edges in which a pattern occurs
and a pattern occurs in an edge whenever it occurs,
in the original dataset, in both connected vertices. That
is, for each edge we assign the set of common items
of both nodes, such that a pattern always covers two
nodes connected by an edge. As a consequence, W

ignores isolated nodes in which p occurs. To obtain the
same vertex subset in MinerLC it is necessary to remove
isolated nodes, which is enabled by applying a 1-core
graph abstraction.

• In the basic algorithm, COMODO does not enumerate
closed patterns, the same subgroup may then be asso-
ciated to several patterns. Therefore, a post-processing
is needed to eliminate the duplicates from the list of
subgroups which may then be compared to the subgroups
in the MinerLC pairs. This postprocessing is one of the
standard postprocessing options of COMODO).

• MinerLC is run with a core definition while COMODO
uses various parameters to limit the enumeration, as for
instance the top-k parameter.

To compare the results, MinerLC should be run with same
minimum support threshold as COMODO and should only
use a 1-core abstraction. The other parameters of COMODO
should then have a value that does not limit the enumeration.

Furthermore, the two methods select patterns according to
different criteria. This is exemplified in Figure 1, in which
we have three graphs and three subgraphs induced by three
vertices (in red). The subgraph G

123

of the top graph G is
a 2-core with a local modularity of 0.178. Within the central
graph, the subgraph G

123

is also a 2-core but with a low local
modularity of -0.15. Finally, within the bottom graph, G

123

is
not a 2-core (since it has an empty 2-core subgraph) with a
high local modularity of 0.16.

Fig. 1. Three graphs (top, center, bottom) each with a subgraph displayed in
red. The two topmost subgraphs are 2-cores while the central subgraph has
an empty 2-core.. The top and bottom graphs have local modularity above
0.15 while the central one as negative modularity -0.15.



IV. DATASETS

We performed our experiments in a variety of attributed
graphs ranging from small to medium graphs with small to
large sets of items. Table I depicts the main characteristics of
these datasets (see also [10]), which have been previously used
in pattern mining tasks on attributed graphs. For each dataset,
we indicate the number of edges (|E|), vertices (|V |) and labels
(|L|), the average vertex degree (deg(v)) and average number
of labels per vertex (|l(v)|) in the table.

• S50 is a standard attributed graph dataset2 used in a
previous work about graph abstractions [39]. It represents
148 friendship relations between 50 pupils of a school in
the West of Scotland; the labels concern the students’
substance use (tobacco, cannabis and alcohol) and sport-
ing activity. The values of the corresponding variables are
ordered (see [39] for details).

• The Lawyers dataset concerns a network study of corpo-
rate law partnership that was carried out in a Northeastern
US corporate law firm from 1988 to 1991 in New England
[52]. It concerns 71 attorneys (partners and associates) of
this firm who are the vertices of four networks. In the
resulting data3, each attorney is described using various
attributes. We consider the advice network which is
originally a directed graph in a undirected version, so
that two lawyers are connected if at least one ask for
advice to the other one.

• The CoExp dataset models a representative regulatory
network for yeast obtained from Microarray expression
data processed by the CoRegNet [53] program. In the
graph representing the network, the vertices are co-
regulators and they are linked if they share a common
set of target genes. The vertices are labeled with their
expression profile along a metabolic transition of the
organism. Each influence value represents the regulation
activity of the considered co-regulator. The influence is
high whenever the level of expression of targeted genes
is coherent with the role (activator or inhibitor) and level
of expression of the considered co-regulator.

• LastFM and DBLP.C.ICDM (or DBLP.C for short) were
used in Galbrun [10]. The first dataset models the social
network of last.fm where individuals are described by
the artists or groups they have listened to. The second
contains a co-authorship graph built from a set of publi-
cation references extract from DBLP of researchers that
have published in the ICDM conference. The authors are
labeled by keywords extracted from the papers’ titles.

• DBLP.P was used in Bechara-Prado [54]. It represents
a co-authorship graph built from a set of publication
references extract from DBLP, published between January
1990 and February 2011 in the major conferences or jour-
nals of the Data Mining and Database communities. Three

2Available at:
http://www.stats.ox.ac.uk/⇠snijders/siena/s50 data.htm

3Available at:
https://www.stats.ox.ac.uk/⇠snijders/siena/Lazega lawyers data.htm

TABLE I
DATASETS CHARACTERISTICS: NUMBER OF EDGES (|E|),

VERTICES (|V |), LABELS (|L|), THE AVERAGE VERTEX DEGREE

(deg(v)), AND AVERAGE NUMBER OF LABELS PER VERTEX (|l(v)|)

Nom |V | |E| |L| deg(v) |l(v)|
S50 50 74 14 2.96 7
Lawyers 71 556 42 15.66 20
CoExp 151 1849 36 24.49 18
LastFM 1892 12717 17625 13.44 40.07
DBLP.C 3140 10689 4588 6.81 15.02
DBLP.P 45131 228173 32 10.11 2.15
Delicious 1867 7664 52800 8.21 123.47

labels corresponding to three clusters have been added to
the original dataset based on a thematic partitioning of the
conferences and journals, respectively: DB (databases),
DM (data mining) and AI (artificial intelligence).

• Delicious consists of the social (friendship) network of
the resource sharing system delicious where individuals
are described by their bookmarks’ tags. The dataset is
publicly available and was obtained from the HetRec
workshop [55] at Recsys 2011.

V. EXPERIMENTAL COMPARISONS ON LOCAL
MODULARITY

A. Parameters and Datasets
We considered several rather small datasets using no mini-

mal support parameters, a 1-core abstraction in MinerLC and
parameters that do not limit the enumeration in COMODO.
A post-processing step was added to MinerLC, resulting in
MinerLC+P in order to select and count vertex subgroups
whose induced subgraphs satisfy a local modularity threshold
l. We also used a post-processing step of COMODO for
the resulting pattern set in order to keep only the subset of
closed patterns. The latter subset is obtained by considering all
pairs (c, e) with same (vertex) subgroup e and only keeping
the most specific ones. With this postprocessing COMODO
returns exactly the same patterns as those output by MinerLC.

Below, we consider the following pattern quantities, where
the pairs (c, e) are output by MinerLC unless specified; also,
we consider a given local modularity threshold l.

• #c the number of pairs (c, e)
• #lme: the number of pairs (c, e) such that lme(e) � l

• #nec: the number of pairs (c, e) a top-down search has
to consider to ensure that no pair with lm(e) � l is lost.

• #lm the number of pairs (c, e) such that lm(e) � l

• #lmeSD: the number of pairs (c, e) such that lme(e) � l

generated by COMODO.

B. Pruning: Efficiency of the local modularity estimate
The first experiment investigates how the local modularity

constraint affects the number of output pairs. As lme is an
optimistic estimator, we may consider the best possible opti-
mistic estimator which would only develop the #nec nodes

3https://grouplens.org/datasets/hetrec-2011/



that have at least a descendant (c, e) with local modularity
lm(e) � l. We have then #lm  #nec  #lme. Whenever
#lm is far from #nec this means that there does not exist any
good optimistic estimator. Whenever #lm is close to #nec

which in turn is far from #lme this means that there could be
some optimistic estimator lm that is much better than lme.

By computing these numbers, we can then state separately
for each dataset whether the lme estimate is efficient in
pruning the search with respect to the best possible estimator
nec and whether nec would be efficient in pruning the search,
if such an estimator would be found.

Below, Figure 2 depicts the results of the applied five
datasets. Overall, we observe contrasted results. For instance,
in the Lawyers dataset, MinerLC finds #c=3221 patterns at
level l=0.005 and most of them, 2929, have an lme value above
0.005, not too far from the #nec=1792 patterns any top-down
search would have to develop anyway to select the 1238 with
local modularity lm above 0.005. There is then a slow decrease
of #lme while the decrease of #nec and #lm is much faster. In
contrast, in the DBLP.C dataset, of the total #c=14820 patterns
only 179 have a local modularity estimate above 0.005, 145 of
them have to be developed and 144 do have a local modularity
above 0.005. When the local modularity threshold increases,
#lme keeps being close to #lm. Overall, the Lawyers dataset
displays moderate pruning efficiency, still allowing to avoid
to develop many nodes, and this is also the case of datasets
S50 and CoExp. The DBLP.C dataset displays a very efficient
optimistic pruning and DBLP.P displays a similar behavior.
Detailed results are shown in Table II.

TABLE II
NUMBER OF PATTERNS TOTAL, DEVELOPED, NECESSARY AND WITH
REQUIRED LOCAL MODULARITY (ACCORDING TO THE RESPECTIVE

THRESHOLD 0.005 ... 0.15).

Data / #c / 0.005 0.01 0.02 0.03 0.04 0.05 0.15
S50 83
#lme 83 83 77 72 67 67 36
#nec 83 79 72 66 62 48 0
#lm 81 77 68 63 55 46 0
CoExp 196
#lme 178 166 150 133 125 114 64
#nec 146 137 104 64 34 10 0
#lm 83 65 35 16 8 1 0
DBLP.P 2396
#lme 34 22 15 9 7 5 3
#nec 29 21 8 5 4 4 0
#lm 28 20 7 4 3 3 0
Lawyers 3221
#lme 2929 2512 1970 1640 1365 1146 295
#nec 1792 1131 495 201 99 38 0
#lm 1238 738 308 87 39 5 0
DBLP.C 14820
#lme 179 66 24 16 9 7 1
#nec 145 43 15 4 3 2 0
#lm 144 42 14 3 2 1 0

C. Closure & Efficiency: Impact of closed patterns in reducing
the search space

MinerLC searches a space of closed patterns while CO-
MODO searches the whole pattern space. Therefore, we
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Fig. 2. Numbers of patterns with #lme, #nec and #lm values (on the Y-axis),
above the local modularity threshold (on the X-axis) for 5 attributed networks.



will compare the impact of the closure reduction, for each
local modularity threshold. For that, we consider the quantity
#lme produced by MinerLC+post-processing to the quantity
#lmeSD produced by COMODO. Table III reports #lme and
#lmeSD for our datasets under investigation.

Again, we observe two very different situations. In the
Lawyers and CoExp datasets there is a large difference
between #lmeSD and #lme, while there are not so strong
differences in the other datasets. Large differences typically
occur when items have strong dependencies hence leading to
a large reduction of the search space when applying a closure
operator. For instance, in the Lawyers dataset vertices are
described by various numeric attributes. In our representation,
a single numeric attribute x leads to a set of x  s

i

and
of x > s

i

items with various thresholds s

i

. This allows
to include interval constraint as x 2]s

j

, s

k

] within patterns.
However there are then several equivalent patterns in which
the same interval is represented in various ways. For instance,
consider 4 thresholds s

1

, . . . , s

4

, the interval x 2]s
2

s

3

] is
represented by x > s

2

, x  s

3

, x > s

1

, x > s

2

, x  s

3

and x > s

1

, x > s

2

, x  s

3

, x  s

4

. The latter is the only one
found in a closed pattern. COMODO has then to generate
many equivalent patterns while MinerLC, which applies a
closure operator at each specialisation step never generates
two equivalent patterns, thus reducing the exploration of the
pattern space effectively.

In the DBLP.P datasets at the contrary the items are tags,
with no taxonomic order relating them. Therefore, the values
of #lme and #meSD are much closer, and even identical
regarding the DBLP.C dataset.

TABLE III
NUMBER OF PATTERNS TO DEVELOP IN MINERLC (FROM

POST-PROCESSING) AND COMODO (ACCORDING TO THE RESPECTIVE
LOCAL MODULARITY THRESHOLD 0.005 ... 0.15).

Data / #c 0.005 0.01 0.02 0.03 0.05 0.15
S50 83
#lmeSD 493 493 357 326 259 83
#lme 83 83 77 72 67 36
CoExp 196
#lmeSD 1232895 991231 806911 468991 285183 77823
#lme 178 166 150 133 114 64
DBLP.P 2396
#lmeSD 148 32 18 9 5 3
#lme 34 22 15 9 5 3
Lawyers 3221
#lmeSD 3021675 1535949 677089 420699 168689 10339
#lme 2929 2512 1970 1640 1146 295
DBLP.C 14820
#lmeSD 179 66 24 16 7 1
#lme 179 66 24 16 7 1

D. Comparing k-core reduction to local modularity reduction
In the following, we investigate the effect of applying graph

abstractions, i. e., a k-core abstraction to the local modularity
in terms of reducing the exploited pattern space.

Basically, reducing the number of selected patterns is per-
formed by MinerLC by applying the k-core constraint. For

the COMODO algorithm, it is implemented by requiring the
respective local modularity values of the patterns to exceed
a given threshold. Both ideas result in strongly reducing the
pattern set when applied together with strong constraints. We
investigate hereunder two large datasets, namely the LastFM
and Delicious datasets. Using a 1-core abstraction and no
post-processing MinerLC returns a large number #c of closed
patterns. Then, we run MinerLC applying k-core constraints
and compare the size of the closed pattern to the size of the
closed pattern set obtained by COMODO combined with a
(postprocessing) selection of the closed patterns with a given
local modularity thresholds l. When no constraint (outside the
1 core) is applied, MinerLC finds 1,555,292 and 11,833,577
closed patterns, respectively, and so as many subgraphs and
subgroups.

In Table IV, we show the size of the closed pattern sets
obtained with various k and l parameters. We also report
results from the Lawyers dataset which is smaller but denser
than the previous ones. A first and expected remark is that
these reductions depend on the dataset. When considering
the same parameters, the reduction is always stronger in
Delicious than in LastFM. A second remark is that we obtain
strong reductions in pattern sets even with relatively mild
requirements. Combining both reductions without any post-
processing is appealing as it should allow to address larger
and denser datasets without performing any post-processing.
The two kinds of constraints are of different nature and in the
last column of the table a post-processing is applied to the
6-core and 8-core results of MinerLC in order to select closed
patterns with local modularity of at least 0.02.

Applying both constraints results in a stronger reduction for
all datasets. This is observed in the last two columns of the
table where a post-processing is applied to the 6-core and 8-
core results of MinerLC in order to select closed patterns with
local modularity of at least 0.02.

TABLE IV
REDUCTION ON CLOSED PATTERN SET SIZE WITH k-CORES AND LOCAL

MODULARITY THRESHOLDS l

Data k= 4 k= 6 k=8 6, 0.02 8, 0.02
Last. 1,555,292

61560 12066 3031 3085 2503
Deli. 11,833,577

2150 193 44 22 9
Law. 3221

800 274 83 104 37

VI. MINERLSD: K-CORE AND LOCAL MODULARITY
CONSTRAINED SEARCH

In the following, we first outline our proposed novel ap-
proach MinerLSD. We introduce and discuss the algorithm in
detail. After that, we present results of our experiments apply-
ing MinerLSD for k-Core and local modularity constrained
pattern mining.



A. MinerLSD

The algorithm that we describe below is basically an
adapted version of MinerLC; we extended this algorithm
by adding optimistic estimate pruning according to lme and
pattern selection according to lm. As input (parameters), it
requires a graph G = (V,E), a set of items I , a dataset
D describing vertices as itemsets and a core operator p. p

depends on G and to any image p(X) = W is associated
the core subgraph C whose vertex set is vs(C) = W . In
our experiments, p(X) returns the k-core of X . As further
parameters, MinerLSD considers the corresponding value k

as well as a frequency threshold s and a local modularity
threshold l. It is important to note that in our experiments
described below we did not have to use the minimal support
s, since the local modularity threshold is efficient enough to
strongly reduce the number of patterns.

The algorithm outputs the frequent pairs (c,W ) where c is a
core closed pattern and W = p� ext(c) its associated k-core4.

MinerLSD (G, I, D, p, s, l)
#lme #lm 0
W  p(V )
// also defines the associated core subgraph C = G

W

if | W |< s or lme(W ) < l then exit
enum(int(W ), C, ;) // int(W ) is the closure of ;

Function enum(c, C,EL)
ensure: outputs the frequent (c0,W 0) pairs
where c

0 ◆ c and contains no items of EL
Increase #lme
if lm(C) � l then
Increase #lm and Output (c, vs(C))

end if
for all x 2 I \ c do

/* Generate all augmentations of c*/
W = p � ext(c [ {x}) // with core subgraph C

x

c int(W )
if | W |� s and lme(W ) � l and c \ EL = ; then
enum(c, Cx

,EL)
// enumerate the subtree rooted on c

EL EL [ {x}
end if

end for

Function int(W )
return \

v2W

D(v)

As MinerLC, MinerLSD ensures that each pair (c,W ) is
enumerated once. It has been implemented starting from the
MinerLC original sources5and therefore uses the same dataset
reduction techniques to reduce the subgraphs during the depth-
first traversal of the pattern space. This means that we may
have a fair comparison regarding respective computation costs
of MinerLC and MinerLSD.

5https://lipn.univ-paris13.fr/MinerLC/

B. Experiments

MinerLSD detects the same closed patterns as MinerLC
with post-processing, but with the benefit of pruning using
the lme � l condition, i. e., only developing the #lme nodes
according to Table III.

Furthermore, applying both the k-cores and local modularity
constraints makes it possible to find some balance between the
k-core and the local modularity constraint to apply when fac-
ing large datasets that are difficult to mine. This is investigated
on the two datasets LastFM and Delicious, i. e., those with
the largest number of closed core patterns when considering
1-core and no local modularity thresholds – these were not
investigated in Tables II and III, respectively.

We performed experiments using 1-cores, 2-cores and 3-
cores with local modularity thresholds 0.01,0.02, 0.03, 0.04,
0.05, and 0.15; the results regarding the number of closed
patterns and the total CPU time (including pruning/optimistic
estimation) are shown in Figure 3.

The benefit of applying local modularity constraints in the
resulting number of closed patterns is, as expected, quite
impressive. In the LastFM case there are no strong differences
when using 1-cores, 2-cores and 3-cores while we know from
Table IV that using 4-cores does have an important effect.
Regarding the Delicious dataset, we observe a smaller number
of patterns at local modularity levels 0.04 and 0.05 with 1-
cores than with 2 and 3-cores. When no local modularity
constraint is applied the closed patterns with 2 and 3-cores
are a subset of the closed patterns with 1-cores, therefore the
results seem counterintuitive at first. However, for the same
pattern the 3-core subgraph is smaller than the 1-core subgraph
and may have better local modularity, which happens in the
Delicious case.

Regarding the CPU times, in the Delicious case, the benefit
is obvious: even when not considering the post-processing
costs MinerLSD is always much faster than MinerLC. The
last.fm dataset shows a somewhat different picture: with 1-
cores and at local modularity level of 0.01 MinerLC (which
does not consider local modularity at all) is (slightly) faster
than MinerLSD. This is not that surprising, since MinerLSD
has to compute local modularity estimates and local modular-
ities for all the developed nodes. However, first this happens
only for weak constraints, and second, when using MinerLC
all these computations (in fact much more as there is no
pruning), have to be made anyway at the post-processing stage.
Detailed results are presented in Table V which also displays
the #lme numbers.

VII. CONCLUSIONS

In this paper, we have investigated approaches for efficient
local pattern mining on attributed graphs. For that, we had a
look at different options, including closed pattern mining, op-
timistic estimate pruning using local modularity, and applying
graph abstractions. In particular, we have proposed a novel
method called MinerLSD for enumerating new local patterns
and associated subgroups in attributed graphs.
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Fig. 3. Numbers of patterns and execution time of MinerLSD on Delicious
and LastFM datasets with 1-cores, 2-cores and 3-cores and local modularity
thresholds ranging from 0.01 to 0.15. The Y-axis of the topmost figure
represents the number of closed patterns outptut by MinerLSD while the
bottom figure displays the CPU time. Both Y-axis are displayed using a
logarithmic scale. As a reference we also display on each figures horizontal
lines representing the results of MinerLC with 1-cores.

TABLE V
MINERLSD #LM, #LME AND EXECUTION TIME COMPARED TO #C OF

MINERLC FOR SAME CORE CONSTRAINT

LastFM 1-core #c= 1555292 time= 2874
l 0.01 0.02 0.03 0.04 0.05 0.15
#lme 59528 16163 6817 3475 1920 52
#lm 17627 3633 1238 575 276 0
time (s) 5816 3400 2252 1605 1187 196

2-core
l 0.01 0.02 0.03 0.04 0.05 0.15
#lme 50507 14752 6464 3349 1856 52
#lm 16751 3646 1252 583 282 0
time (s) 4668 2915 1995 1452 1073 178

3-core
l 0.01 0.02 0.03 0.04 0.05 0.15
#lme 39127 12694 5753 3039 1720 50
#lm 14637 3377 1219 572 276 0
time (s) 3422 2262 1596 1174 885 147
Delicious 1-core #c= 11833577 time= 121934
l 0.01 0.02 0.03 0.04 0.05 0.15
#lme 5655 776 255 121 71 4
#lm 2214 165 31 6 1 0
time (s) 5296 2018 1173 825 643 179

2-core
l 0.01 0.02 0.03 0.04 0.05 0.15
#lme 1421 288 116 65 37 3
#lm 879 138 39 11 6 0
time (s) 920 569 426 358 298 129

3-core
l 0.01 0.02 0.03 0.04 0.05 0.15
#lme 430 114 51 25 17 1
#lm 311 71 25 9 6 0
time (s) 259 208 182 158 149 87

MinerLSD is based on two methods – MinerLC and
COMODO: From MinerLC we kept the idea of enumerating
only closed patterns, which is particularly beneficial when-
ever items have dependencies. This occurs as soon as some
attributes, either numeric or hierarchical, have to be translated
into various items to express interesting patterns, e. g., interre-
lated intervals and hierarchical dependencies. We also kept the
idea of reducing pattern subgraphs to core subgraphs which
allows both to strongly reduce the number of patterns and
to focus on essential part of graphs. From COMODO, we
borrowed the idea of selecting cohesive subgraphs during the
search according to topological quantities as local modularity
and, above all, to allow pruning by using optimistic estimates
of the local modularity measure.

We performed a set of experiments in order to estimate the
impact of the investigated approaches. First, we presented the
results of several experiments using the two basic approaches,
i. e., MinerLC and COMODO, where we applied some post-
processing for an overall analysis. The purpose was then to
investigate i) the pruning efficiency of MinerLC using the
local modularity estimate as implemented in COMODO, ii)
the impact of searching for closed patterns and therefore
enumerating only the cohesive subgraph associated to patterns,
and iii) the added selection potential obtained by combining
both k-core reduction and local modularity selection.

Overall the result indicated effects that were always positive,
and sometimes even crucial, for allowing to handle even
rather complex and large datasets with reasonable pattern set
sizes and computational effort – without using any minimum
support threshold. Then, the results of these studies were above
all a motivation to implement our novel proposed method,
named MinerLSD, since it was built from the sources of
MinerLC, that allows both closure, optimistic estimate pruning
and k-core reduction during the search, and COMODO which
is based on an adapted subgroup discovery (SD) approach.

The further experiments using MinerLSD show the effi-
ciency of the presented method, and in particular that the
extra computational steps which were added to MinerLC do
not harm the overall computational costs, even when applying
weak constraints, while strongly reducing the pattern set sizes.
Overall, mixing these different ideas and constraints we obtain
a very flexible tool that allows to handle large graphs with
adequate constraints on the subgroups to discover.

For future work, we intend to characterize the attributed
graphs in terms of which pruning method is especially effi-
cient, and to investigate other measures than local modularity
in order to estimate their pruning efficiency. Furthermore, we
aim to investigate other core definitions than k-cores as well.

VIII. ACKNOWLEDGEMENTS

This work has been supported by the German Research
Foundation (DFG) project “MODUS” (grant AT 88/4-1). Also,
the research leading to these results has received funding from
the Project Chistera Adalab (ANR-14-CHR2-0001-04).



REFERENCES

[1] M. E. J. Newman, “The Structure and Function of Complex Networks,”
SIAM Review, vol. 45, no. 2, pp. 167–256, 2003.

[2] R. Kumar, J. Novak, and A. Tomkins, “Structure and Evolution of Online
Social Networks,” in Proc. ACM SIGKDD. ACM, 2006, pp. 611–617.

[3] J. A. Almendral, J. Oliveira, L. Lpez, J. Mendes, and M. A. Sanjun, “The
Network of Scientific Collaborations within the European Framework
Programme,” Physica A: Statistical Mechanics and its Applications, vol.
384, no. 2, pp. 675 – 683, 2007.

[4] F. Mitzlaff, M. Atzmueller, D. Benz, A. Hotho, and G. Stumme,
“Community Assessment using Evidence Networks,” in Analysis of
Social Media and Ubiquitous Data, ser. LNAI, vol. 6904, 2011.

[5] A. Silva, W. Meira Jr, and M. J. Zaki, “Mining Attribute-Structure Cor-
related Patterns in Large Attributed Graphs,” Proc. VLDB Endowment,
vol. 5, no. 5, pp. 466–477, 2012.

[6] M. Atzmueller and F. Lemmerich, “Exploratory Pattern Mining on
Social Media using Geo-References and Social Tagging Information,”
IJWS, vol. 2, no. 1/2, pp. 80–112, 2013.

[7] F. Mitzlaff, M. Atzmueller, G. Stumme, and A. Hotho, “Semantics of
User Interaction in Social Media,” in Complex Networks IV, ser. SCI.
Springer, 2013, vol. 476.

[8] M. Atzmueller, “Data Mining on Social Interaction Networks,” Journal
of Data Mining and Digital Humanities, vol. 1, June 2014.

[9] S. Pool, F. Bonchi, and M. van Leeuwen, “Description-driven Commu-
nity Detection,” TIST, vol. 5, no. 2, 2014.

[10] E. Galbrun, A. Gionis, and N. Tatti, “Overlapping Community Detection
in Labeled Graphs,” DMKD, vol. 28, no. 5-6, pp. 1586–1610, Sep. 2014.

[11] F. Mitzlaff, M. Atzmueller, A. Hotho, and G. Stumme, “The Social
Distributional Hypothesis,” SNAM, vol. 4, no. 216, 2014.

[12] M. Kibanov, M. Atzmueller, C. Scholz, and G. Stumme, “Temporal
Evolution of Contacts and Communities in Networks of Face-to-Face
Human Interactions,” Sci. Ch. Inf. Sci, vol. 57, no. 3, pp. 1–17, 2014.

[13] H. Soldano, G. Santini, and D. Bouthinon, “Local Knowledge Discovery
in Attributed Graphs,” in Proc. ICTAI. IEEE, 2015, pp. 250–257.

[14] M. Atzmueller, S. Doerfel, and F. Mitzlaff, “Description-Oriented Com-
munity Detection using Exhaustive Subgroup Discovery,” Information
Sciences, vol. 329, pp. 965–984, 2016.

[15] A. A. Bendimerad, M. Plantevit, and C. Robardet, “Unsupervised Ex-
ceptional Attributed Subgraph Mining in Urban Data,” in Proc. ICDM.
Washington, DC, USA: IEEE, 2016, pp. 21–30.

[16] M. Kaytoue, M. Plantevit, A. Zimmermann, A. Bendimerad, and C. Ro-
bardet, “Exceptional Contextual Subgraph Mining,” Machine Learning,
pp. 1–41, 2017.

[17] F. Moser, R. Colak, A. Rafiey, and M. Ester, “Mining Cohesive Patterns
from Graphs with Feature Vectors,” in Proc. SDM, 2009, pp. 593–604.

[18] M. Atzmueller, “Compositional Subgroup Discovery on Attributed
Social Interaction Networks,” in Proc. International Conference on
Discovery Science, 2018.

[19] S. Wasserman and K. Faust, Social Network Analysis: Methods and
Applications, 1st ed., ser. Structural analysis in the social sciences.
Cambridge University Press, 1994, no. 8.

[20] M. Atzmueller, “Detecting Community Patterns Capturing Exceptional
Link Trails,” in Proc. IEEE/ACM ASONAM. Boston, MA, USA: IEEE
Press, 2016.

[21] M. E. J. Newman, “Detecting Community Structure in Networks,” Europ
Physical J, vol. 38, 2004.

[22] M. E. Newman and M. Girvan, “Finding and Evaluating Community
Structure in Networks,” Phys Rev E Stat Nonlin Soft Matter Phys,
vol. 69, no. 2, pp. 1–15, 2004.

[23] K. Morik, “Detecting Interesting Instances,” in Pattern Detection and
Discovery, ser. Lecture Notes in Computer Science, D. Hand, N. Adams,
and R. Bolton, Eds. Springer, 2002, vol. 2447, pp. 13–23.

[24] K. Morik, J. Boulicaut, and A. Siebes, Eds., Local Pattern Detection,
International Seminar, Dagstuhl Castle, Germany, April 12-16, 2004,
Revised Selected Papers, ser. LNCS, vol. 3539. Springer, 2005.

[25] A. J. Knobbe, B. Cremilleux, J. Fürnkranz, and M. Scholz, “From
Local Patterns to Global Models: The LeGo Approach to Data Min-
ing,” in From Local Patterns to Global Models: Proceedings of the
ECML/PKDD-08 Workshop (LeGo-08), 2008, pp. 1 – 16.

[26] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules,” in Proc. VLDB. Morgan Kaufmann, 1994, pp. 487–499.

[27] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns Without Candidate
Generation,” in Proc. ACM SIGMOD. ACM Press, 05 2000, pp. 1–12.

[28] M. Atzmueller, Knowledge-Intensive Subgroup Mining – Techniques for
Automatic and Interactive Discovery. IOS Press, 2007.

[29] F. Lemmerich, M. Atzmueller, and F. Puppe, “Fast Exhaustive Subgroup
Discovery with Numerical Target Concepts,” Data Mining and Knowl-
edge Discovery, vol. 30, pp. 711–762, 2016.

[30] M. Atzmueller, “Subgroup Discovery – Advanced Review,” WIREs:
Data Mining and Knowledge Discovery, vol. 5, no. 1, pp. 35–49, 2015.

[31] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Efficient Mining of
Association Rules using Closed Itemset Lattices,” Information Systems,
vol. 24, no. 1, pp. 25–46, 1999.

[32] T. Uno, T. Asai, Y. Uchida, and H. Arimura, “An Efficient Algorithm
for Enumerating Closed Patterns in Transaction Databases,” in Proc.
International Conference on Discovery Science, 2004, pp. 16–31.

[33] M. Boley, T. Horváth, A. Poigné, and S. Wrobel, “Listing Closed Sets
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