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Abstract. Temporal evolution and dynamics of social network inter-
actions provide insights into the formation of social relationships. In
this paper, we explore automatic detection of face-to-face proximity dur-
ing two student meet-ups for the purposes of community detection. The
data was collected with the help of wearable sensors. Next to commu-
nity detection, we examine the structural metrics of the formed networks
over time. Contrary to previous studies, we observed that conversations
tended to develop in a parabolic rather than linear manner during both
events. For community detection, overall the Louvain method showed the
most promising consistent results for both networks.

1 Introduction

Social relationships that are formed during events can be captured in face-to-face
contact networks [1,3]. Their analysis can provide insights into the dynamics,
predictability [30-32] and evolution of communities, e.g., cf. [4,19,20]. In the
past, the available methods to collect empirical data relied on surveys and diary
methodologies which are slow and inaccurate [22]. Therefore, novel technologies
have been developed which provide new and promising approaches of collecting
face-to-face contact data [2,6,14, 38].

In this paper, we focus on face-to-face proximity as the basic measure of social
contact occurrence and investigate the evolution of contacts and communities
in social networks. For data collection, we utilized wearable sensors developed
by the SocioPatterns consortium.! The proximity tags are based on Radio Fre-
quency Identification technology (RFID chips), capable of detecting close-range
and face-to-face proximity (1 - 1.5 meters) with a temporal resolution of 20
seconds [10]. The most significant advantage of using the SocioPatterns tags is
that the human body acts as a radio-frequency blocker at the frequency used on
the chips [10]. Therefore, only the signals that are broadcasted directly forward
from the person wearing the tag will be detected by other tags. With help of our
own bodies, a face-to-face contact can be observed with a probability of over 99
percent using the interval of 20 seconds as the minimal contact duration [10].

The goals of this work were twofold: First to assess the evolution of contacts
of face-to-face proximity, and second to compare the performance of existing
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algorithms for community detection, i. e., for detecting “densely connected”
areas of a network. Practical applications of such algorithms include monitoring
human activity to study the dynamics of human contacts, such as hospitals,
museums and conferences [4,18,34]. Community detection is rather challenging
in that a network can be divisible into several communities according to various
criteria, sometimes also with a hierarchical structure [15,24]. The availability of
competent community detection algorithms is therefore of utmost importance.
For the automatic detection of communities, several algorithms can be used,
e.g., [15,24], for which standard methods are implemented in the igraph [12]
software package. The general problem definition of community detection can be
formulated as follows: given a network G(V, E), find the optimal communities as
in closely connected groups of nodes and a moderate number of disparate outliers
[35]. We applied the following algorithms from recently proposed taxonomies of
numerous community detection methods [11, 15, 37]: Edge Betweenness, Info
Map, Spinglass, Louvain, Label Propagation, and Leading Eigenvector.

All of these algorithms differ substantially. Edge Betweenness is a hierarchical
process decomposing a given graph [24] by removing edges in decreasing order
of their edge betweenness scores, i. e., identifying edges on multiple shortest
paths which in many cases are bridges linking groups together. Infomap is based
on random walks and information theoretic principles [29]. The algorithm tries
to group based on the shortest description length for a random walk on the
graph. The description length is measured by the number of bits per vertex
required to encode the path of the random walk. The best communities are those
that transmit a large deal of information while requiring minimal bandwidth.
Spinglass originates from physics and is based on the Potts model [28]. Each
node can be in a certain state and the interactions between the nodes (the
edges) specify which state the node has. This process is simulated several times
and nodes with the same state are seen as a community. Spinglass provides a
parameter determining the cluster sizes, i. e., thus the number of communities.
The Louvain method is a top-down process based on modularity optimization [7].
First, small communities are identified by their modularity score [17,24] (each
node is its own community); smaller communities are then grouped together if
and only if it increases the modularity. This process is repeated until the merging
of communities will no longer increase the modularity score. Label Propagation
is the simplest approach in which every node is given one of k labels [27]. During
each iteration, every label a node has is re-assigned in a manner that nodes adopt
the most frequent label of its neighbors. The algorithm stops when every node
has the most frequent label in its neighborhood. Finally, Leading Eigenvector is
modularity based and uses optimization, inspired by a technique called graph
partitioning [23]. The algorithm tries to find the eigenvector that corresponds
to the most positive eigenvalue of the modularity matrix. Afterwards, it divides
the network into communities in harmony with the elements of the vector.

In the rest of the paper, we provide information describing the data collection
and preprocessing for the purposes of network detection analysis in Section 2,
the results of the analysis using the six algorithms described above in Section 3,
and some insights regarding the nature of the communities detected in Section 4.



2 Data Set

The data was collected during two student events organized at a university in the
Netherlands. Attendees were invited to participate by signing a consent form.
The data collection was anonymized, including solely information about partic-
ipant gender. For the two events, the number of male and female participants
was comparable (event 1: 12 male and 11 female; event 2: 10 male and 9 female).
The age interval was between 18 to 24 years old. Each participant was asked
to wear a SocioPatterns proximity tag. Social contact was established when the
contact between the proximity tags was at least 20 seconds [10]. Interactions
that took place within an interval of 20 seconds were merged if the actors re-
mained the same, according to the commonly used threshold [10]. This resulted
in a data set where accidental interactions were filtered out (e.g., two people
crossing each other a total of 4 seconds to a different area of the event). In ad-
dition, a minimum RSSI value of -85 was used as a threshold to filter out weak
interactions.

3 Results

As shown in Table 1, a total of 25 participants used the proximity tags at event
1 and 19 at event 2. Comparing both graphs, some structural differences can be
observed w.r.t. contact duration and the number of interactions (see Table 1).
A possible explanation of this difference might be the nature of the event; event
1 was organized between two groups that did not knew each other well. The
network of event 2 shows a diameter of 2, which indicates a small-world effect [9].

Table 1: High level network statistics: Number of nodes (N) and edges (E), Average
contact duration (Avg. Con), Longest contact (L), Network diameter (D),
Graph density (Density), Transitivity and Average path length (Avg. Path).

Network N E Avg. Con L D Density Transitivity Avg. Path

Event 1 25606 309.60 58075 2.02 0.47 2
Event 2 19 1239 535.70 5126 2 7.25 .60 1.51

Table 2 shows several centrality measures [8,16]: the individual measures
show which participants played an important role during the events.

Table 2: Average node centrality measures for both events.
Network Eigenvector Average Degree Closeness Betweenness

Event 1 0.21 48.48 0.02 12
Event 2 0.29 130.42 0.04 4.58

Event 2 showed a higher eigenvector centrality than event 1. A high eigenvec-
tor score suggests that all nodes are connected to other nodes that have a high
eigenvector score, which indicates that the network of event 1 was densely inter-
connected. The degree centrality of event 2 was higher than event 1, indicating



that on average, the participants during event 2 had more connections (propor-
tionally, since the networks differ in the number of participants). Both events
show a low closeness score of 0.02-0.04 indicating that each participant could be
reached in relatively few steps. In Figure 1, the aggregated contact duration of
both events is shown. In line with a commonly seen power law [6,10,21], the
shorter a contact was, the more likely it was to occur.

In order to analyze the evolution of
contacts, the events were divided into Aggregated Contacts
three intervals. In Table 3 and 4, the evo-
lution of several measures of the network

of event 1 and 2 is shown. During each g N
period of event, almost all nodes were ac- o
tive (see Table 3). A different distribution 3

is visible when examining the number of
edges that are present in each period. The
number of active edges decreases in event
1 in period 2, but recovers during period 3.
The diameter scores confirm this observa-
tion. The diameter was lowest during pe-
riod 2 of event 1 (indicating a small world
effect) and highest during period 1 and 3.
A similar pattern as the evolution of edges
and diameter is visible in the e dge den-
sity and average degree. Table 4 shows the
network evolution metrics of event 2. The
average contact duration decreases between period 1 to period 2 and rises again
in period 3. Similar to event 1, not all nodes were active during each period of
the event and the number of edges increases in the second and even the third
period. Finally, in Figure 2 and 3, the changes in the Betweenness centrality are
clearly represented.
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Fig. 1: Cumulated contact length (in
seconds) distribution of all
face-to-face contacts.
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Fig. 2: Event 1 divided into three equal slices. From left to right: (a) period 1, (b)
period 2 and (c) period 3.



Table 3: Graph evolution metrics of Event 1: Number of nodes (N), edges (E), Di-
ameter, Average path length, Longest contact length (in seconds), Average
contact length (in seconds), Edge density, Average Degree, Closeness and
Betweenness centrality.

Period 1 Period 2 Period 3

N 23 18 22

E 268 145 193
Diameter 5 4 5
Avg. Path Length  2.41 2.24 2.50
Max Contact Length 5807 2783 1009
Avg. Contact Length 422.97 369.10 107.47
Edge Density 1.06 0.95 0.84
Avg. Degree 23.30 16.11 17.55
Avg. Closeness 0.02 0.03 0.02
Avg. Betweenness 15.5 10.50 15.77

Table 4: Graph evolution metrics of Event 2: Number of nodes (N), edges (E), Di-
ameter, Average path length, Longest contact length (in seconds), Average
contact length (in seconds), Edge density, Average Degree, Closeness and
Betweenness centrality.

Period 1 Period 2 Period 3

N 15 17 19

E 150 411 678
Diameter 3 5 3
Avg. Path Length  1.94 2.01 1.64
Max Contact Length 5126 3445 1630
Avg. Contact Length 1041.07 916.58 193.02
Edge Density 1.43 3.02 3.95
Avg. Degree 20 48.35  T71.37
Avg. Closeness 0.04 0.03 0.03
Avg. Betweenness 6.6 8.06 5.79

It is important to note that the results of period 3 in event 2 are negatively in-
fluenced by the fact that the graph becomes sparsely connected by a two bridges.
Especially the closeness centrality suffers from a disconnected graph since the
metric calculates the distance between nodes. If the network is disconnected, the
distance is infinite [25,36]. One might not notice this effect in Table 4, but the
closeness centrality decline from 0.02 to 0.04 was large since the values of the
closeness centrality metric tend to span a moderately small dynamic range [25].

Since we did not collect any information about individual participants apart
from their gender, we were unable to analyze the effect of sociodemographic
variables on community emergence. With respect to gender, we observed clear
signs of homophily. During event 1, both groups barely knew each other before
the start of the event. During event 2, both groups have had several earlier events
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Fig. 3: Event 2 divided into three equal periods. From left to right: (a) period 1, (b)
period 2 and (c) period 3.

together. In Figure 4, the networks of both events are depicted, where exemplary
communities are shown — detected using the Louvain algorithm.

In order to analyze the robustness of the community detection algorithms,
we used the modularity score of the total graph and the average computational
time (each algorithm was run a total of 20 times and the time was averaged).
On average, the modularity score, which gives insight in the strength of the
divisions of a network into communities, was 0.27 (SD=0.19) for event 1 and 0.08
(8D=0.07) for event 2. No algorithm managed to determine communities with
a modularity higher than 0.46 (see Table 5). The Spinglass algorithm performed
worst on both events and took the longest to compute. The Louvain and Label
Propagation algorithms showed the highest modularity scores for event 1 and
achieved this result in a short computational time.

The community structure for an event can be examined using the normalized
mutual information metric (NMI) [13]. The more basic variant mutual informa-
tion (MI) is a measure of the mutual dependence between two variables [13].
Since NMI is normalized, we can measure and compare the NMI score of the
resulted networks in regard to their calculated communities (NMI = 0 means no
mutual information, NMI = 1 means perfect correlation). Table 6 and 7 show
the NMI scores of each algorithm for event 1 and 2.

4 Conclusion and Discussion

We employed RFID chips with proximity detection to collect face-to-face con-
tact data during two events. We performed an analysis of the contact graphs and
examined the evolution of contacts by dividing the contact networks into three
different periods. In order to automatically detect communities, six conceptu-
ally different community detection algorithms were used. To analyze the quality
of the communities that were detected, their modularity score, the number of
detected communities, the computational time each algorithm needed and nor-
malized mutual information were examined. Conversations tended to develop in
a parabolic manner during both events. This parabolic tendency is contradictory
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Fig. 4: Communities detected using Louvain (Modularity) where male nodes are sized
big and female nodes are sized small: (a) event 1, (b) event 2.

Table 5: Comparison of several community detection algorithms for both events. The
communities, modularity and computational time are the averages of 20 sim-

ulations
Algorithm Parameter Event 1 Event 2
No. of Communitites 6 8
Edge Betweenness Modularity 0.24 0.03
Computational Time 3.03 12.07
No. of Communitites 10 7
Info Map Modularity 0.04 0.09
Computational Time 0.37 0.41
No. of Communitites 4 3
Spinglass Modularity 0.07 0.03
Computational Time 11.54  10.93
No. of Communitites 4 3
Louvain Modularity 0.46 0.17
Computational Time 0.07 0.07
No. of Communitites 4 1
Label Prop Modularity 0.46 0.00
Computational Time 0.05 0.06
No. of Communitites 5 3
Leading Eigenvector Modularity 0.39 0.15
Computational Time 1.44 1.16




Table 6: Comparison of community structures using NMI on event 1.

Comparisons

Edge Betweenness Info Map 0.58 Info Map Edge Betweenness 0.58 Spinglass Edge Betweenness 0.86
Spinglas 0.86 Spinglas 0.53 Info Map 0.53
Louvain 0.92 Louvain 0.56 Louvain 0.83
Label Prop 0.79 Label Prop 0.51 Label Prop 0.68
Leading Eig 0.80 Leading Eig 0.61 Leading Eig 0.73

Louvain Edge Betweenness 0.92 Label Prop Leading Eig 0.72 Leading Eig Edge Betweenness 0.80
Info Map 0.56 Edge Betweenness 0.79 Info Map 0.61
Spinglas 0.83 Info Map 0.51 Spinglass 0.73
Label Prop 0.87 Spinglass 0.68 Louvain 0.86
Leading Eig 0.86 Louvain 0.87 Label Prop 0.72

Table 7: Comparison of community structures using NMI on event 2.

Comparisons

Edge Betweenness Info Map 0.53 Info Map Edge Betweenness 0.53 Spinglass  Edge Betweenness 0.55
Spinglas 0.55 Spinglas 0.37 Info Map 0.37
Louvain 0.51 Louvain 0.24 Louvain 0.20
Label Prop 0.00 Label Prop 0.00 Label Prop 0.00
Leading Eig 0.56 Leading Eig 0.33 Leading Eig 0.35

Louvain Edge Betweenness 0.52 Label Prop Leading Eig 0.00 Leading Eig Edge Betweenness 0.56
Info Map 0.24 Edge Betweenness 0.00 Info Map 0.33
Spinglas 0.20 Info Map 0.00 Spinglass 0.35
Label Prop 0.00 Spinglass 0.00 Louvain 0.51
Leading Eig 0.51 Louvain 0.00 Label Prop 0.00

to the linear patterns other studies have found [19,20]. The most likely expla-
nation is that the linear patterns were found for events with a highly structured
program (for example, the end of the presentation of the key speaker would likely
result in a peak of interactions at the end of the event).

With respect to community detection, the Label Propagation and Louvain al-
gorithms showed the most promising results in the network of event 1. Both their
modularity scores ranked the highest while demanding the least computational
time. The lack of results for the Leading Eigenvector and Label Propagation
algorithms is in line with earlier studies [26]. It is interesting to note that the al-
gorithm performs poorly in both an experimental (in most studies the networks
are randomly generated) and the real-life setting.

Most noteworthy, the Label Propagation algorithm failed to calculate any
valuable information in the network of event 2. It is interesting to see that
the same procedure can behave differently on two similar networks. Another
important note concerns the NMI scores during event 2. Apparently, network
two was a lot harder to compute since almost every NMI score is lower than in
event 1. The vastly fluctuating results are a possible indication that our study
suffered from the sparsity-problem. In a follow-up study, we intend to increase
the size of the networks and include ground truth by means of video information
and participant recollection. Other interesting directions for future work are
given by including spatial /localization information for analyzing spatio-temporal
patterns [2,33] as well as collecting more descriptive information in order to
enable community detection on attributed networks, e.g., [5].
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